Charlotte L Nawijn, Sander Spiekhout, Jason Voorneveld, Johannes G Bosch, Michel Versluis, Tim Segers, Guillaume Lajoinie
{"title":"Stress-strain analysis of single ultrasound-driven microbubbles for viscoelastic shell characterization.","authors":"Charlotte L Nawijn, Sander Spiekhout, Jason Voorneveld, Johannes G Bosch, Michel Versluis, Tim Segers, Guillaume Lajoinie","doi":"10.1121/10.0035639","DOIUrl":null,"url":null,"abstract":"<p><p>Microbubbles are of great interest both for ultrasound imaging and for ultrasound-assisted therapy due to their nonlinear scattering, which is enhanced by the viscoelastic shell. A full characterization of this nonlinear response is therefore crucial to fully exploit their potential. Current microbubble characterization techniques rely on assumptions regarding the microbubble shell rheology. Here, a stress-strain method is proposed to characterize the viscoelastic shells of single microbubbles with minimal underlying assumptions, which mainly entail separable viscous and elastic contributions. Detailed knowledge of the acoustic driving pressure and frequency, combined with a precise measurement of the bubble oscillations obtained through high-frequency ultrasound scattering, allows to derive the viscoelastic contribution of single microbubbles. To account for experimental uncertainties, we employed a fitting procedure of the surface tension in the buckled and ruptured regimes, which currently limits the applicability of the method to phospholipid-shelled microbubbles. The method was validated through simulations, and used to experimentally characterize 275 individual microbubbles from a monodisperse population, revealing a shell elasticity of (0.49 ± 0.10) N m-1, and initial surface tension of (28.7±3.94) mN m-1. Besides providing detailed information on single bubble dynamics, this analysis paves the way for the characterization of the viscous dissipation mechanisms of individual microbubble shells.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 2","pages":"897-911"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0035639","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microbubbles are of great interest both for ultrasound imaging and for ultrasound-assisted therapy due to their nonlinear scattering, which is enhanced by the viscoelastic shell. A full characterization of this nonlinear response is therefore crucial to fully exploit their potential. Current microbubble characterization techniques rely on assumptions regarding the microbubble shell rheology. Here, a stress-strain method is proposed to characterize the viscoelastic shells of single microbubbles with minimal underlying assumptions, which mainly entail separable viscous and elastic contributions. Detailed knowledge of the acoustic driving pressure and frequency, combined with a precise measurement of the bubble oscillations obtained through high-frequency ultrasound scattering, allows to derive the viscoelastic contribution of single microbubbles. To account for experimental uncertainties, we employed a fitting procedure of the surface tension in the buckled and ruptured regimes, which currently limits the applicability of the method to phospholipid-shelled microbubbles. The method was validated through simulations, and used to experimentally characterize 275 individual microbubbles from a monodisperse population, revealing a shell elasticity of (0.49 ± 0.10) N m-1, and initial surface tension of (28.7±3.94) mN m-1. Besides providing detailed information on single bubble dynamics, this analysis paves the way for the characterization of the viscous dissipation mechanisms of individual microbubble shells.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.