Modic changes: From potential molecular mechanisms to future research directions (Review).

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular medicine reports Pub Date : 2025-04-01 Epub Date: 2025-02-07 DOI:10.3892/mmr.2025.13455
Weijian Zhu, Zhou Yang, Sirui Zhou, Jinming Zhang, Zhihao Xu, Wei Xiong, Ping Liu
{"title":"Modic changes: From potential molecular mechanisms to future research directions (Review).","authors":"Weijian Zhu, Zhou Yang, Sirui Zhou, Jinming Zhang, Zhihao Xu, Wei Xiong, Ping Liu","doi":"10.3892/mmr.2025.13455","DOIUrl":null,"url":null,"abstract":"<p><p>Low back pain (LBP) is a leading cause of disability worldwide. Although not all patients with Modic changes (MCs) experience LBP, MC is often closely associated with LBP and disc degeneration. In clinical practice, the focus is usually on symptoms related to MC, which are hypothesized to be associated with LBP; however, the link between MC and nerve compression remains unclear. In cases of intervertebral disc herniation, nerve compression is often the definitive cause of symptoms. Recent advances have shed light on the pathophysiology of MC, partially elucidating its underlying mechanisms. The pathogenesis of MC involves complex bone marrow‑disc interactions, resulting in bone marrow inflammation and edema. Over time, hematopoietic cells are gradually replaced by adipocytes, ultimately resulting in localized bone marrow sclerosis. This process creates a barrier between the intervertebral disc and the bone marrow, thereby enhancing the stability of the vertebral body. The latest understanding of the pathophysiology of MC suggests that chronic inflammation plays a significant role in its development and hypothesizes that the complement system may contribute to its pathological progression. However, this hypothesis requires further research to be confirmed. The present review we proposed a pathological model based on current research, encompassing the transition from Modic type 1 changes (MC1) to Modic type 2 changes (MC2). It discussed key cellular functions and their alterations in the pathogenesis of MC and outlined potential future research directions to further elucidate its mechanisms. Additionally, it reviewed the current clinical staging and pathogenesis of MC, recommended the development of an updated staging system and explored the prospects of integrating emerging artificial intelligence technologies.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13455","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low back pain (LBP) is a leading cause of disability worldwide. Although not all patients with Modic changes (MCs) experience LBP, MC is often closely associated with LBP and disc degeneration. In clinical practice, the focus is usually on symptoms related to MC, which are hypothesized to be associated with LBP; however, the link between MC and nerve compression remains unclear. In cases of intervertebral disc herniation, nerve compression is often the definitive cause of symptoms. Recent advances have shed light on the pathophysiology of MC, partially elucidating its underlying mechanisms. The pathogenesis of MC involves complex bone marrow‑disc interactions, resulting in bone marrow inflammation and edema. Over time, hematopoietic cells are gradually replaced by adipocytes, ultimately resulting in localized bone marrow sclerosis. This process creates a barrier between the intervertebral disc and the bone marrow, thereby enhancing the stability of the vertebral body. The latest understanding of the pathophysiology of MC suggests that chronic inflammation plays a significant role in its development and hypothesizes that the complement system may contribute to its pathological progression. However, this hypothesis requires further research to be confirmed. The present review we proposed a pathological model based on current research, encompassing the transition from Modic type 1 changes (MC1) to Modic type 2 changes (MC2). It discussed key cellular functions and their alterations in the pathogenesis of MC and outlined potential future research directions to further elucidate its mechanisms. Additionally, it reviewed the current clinical staging and pathogenesis of MC, recommended the development of an updated staging system and explored the prospects of integrating emerging artificial intelligence technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
期刊最新文献
LncPrep + 96kb inhibits ovarian fibrosis by upregulating prolyl oligopeptidase expression. Metabolic syndrome in patients with schizophrenia: Underlying mechanisms and therapeutic approaches (Review). Dysregulation of the SREBP pathway is associated with poor prognosis and serves as a potential biomarker for the diagnosis of hepatocellular carcinoma. [Retracted] miR‑23a suppresses pancreatic cancer cell progression by inhibiting PLK‑1 expression. Semaglutide enhances PINK1/Parkin‑dependent mitophagy in hypoxia/reoxygenation‑induced cardiomyocyte injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1