Sex-specific signatures of GLP-1 and amylin on resting state brain activity and functional connectivity in awake rats

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2025-02-05 DOI:10.1016/j.neuropharm.2025.110348
Tanzil M. Arefin , Stina Börchers , Doris Olekanma , Samuel R. Cramer , Morgan R. Sotzen , Nanyin Zhang , Karolina P. Skibicka
{"title":"Sex-specific signatures of GLP-1 and amylin on resting state brain activity and functional connectivity in awake rats","authors":"Tanzil M. Arefin ,&nbsp;Stina Börchers ,&nbsp;Doris Olekanma ,&nbsp;Samuel R. Cramer ,&nbsp;Morgan R. Sotzen ,&nbsp;Nanyin Zhang ,&nbsp;Karolina P. Skibicka","doi":"10.1016/j.neuropharm.2025.110348","DOIUrl":null,"url":null,"abstract":"<div><div>Gut-produced glucagon-like peptide-1 (GLP-1) and pancreas-made amylin robustly reduce food intake by directly or indirectly affecting brain activity. While for both peptides a direct action in the hindbrain and the hypothalamus is likely, few studies examined their impact on whole brain activity in rodents and did so evaluating male rodents under anesthesia. However, both sex and anesthesia may significantly alter the influence of feeding controlling molecules on brain activity. Therefore, we investigated the effect of GLP-1 and amylin on brain activity and functional connectivity (FC) in awake adult male and female rats using resting-state functional magnetic resonance imaging (rsfMRI). We further examined the relationship between the altered brain activity or connectivity and subsequent food intake in response to amylin or GLP-1. We observed sex divergent effects of amylin and GLP-1 on the brain activity and FC patterns. Most importantly correlation analysis between FC and feeding behavior revealed that different brain areas potentially drive reduced food intake in male and female rats. Our findings underscore the distributed and distinctly sex divergent neural network engaged by each of these anorexic peptides and suggest that different brain areas may be the primary drivers of the feeding outcome in male and female rats. Moreover, prominent activity and connectivity alterations observed in brain areas not typically associated with feeding behavior in both sexes may either indicate novel feeding centers or alternatively suggest the involvement of these substances in behaviors beyond feeding and metabolism. The latter question is of potential translational significance as analogues of both amylin and GLP-1 are clinically utilized.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"269 ","pages":"Article 110348"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825000541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Gut-produced glucagon-like peptide-1 (GLP-1) and pancreas-made amylin robustly reduce food intake by directly or indirectly affecting brain activity. While for both peptides a direct action in the hindbrain and the hypothalamus is likely, few studies examined their impact on whole brain activity in rodents and did so evaluating male rodents under anesthesia. However, both sex and anesthesia may significantly alter the influence of feeding controlling molecules on brain activity. Therefore, we investigated the effect of GLP-1 and amylin on brain activity and functional connectivity (FC) in awake adult male and female rats using resting-state functional magnetic resonance imaging (rsfMRI). We further examined the relationship between the altered brain activity or connectivity and subsequent food intake in response to amylin or GLP-1. We observed sex divergent effects of amylin and GLP-1 on the brain activity and FC patterns. Most importantly correlation analysis between FC and feeding behavior revealed that different brain areas potentially drive reduced food intake in male and female rats. Our findings underscore the distributed and distinctly sex divergent neural network engaged by each of these anorexic peptides and suggest that different brain areas may be the primary drivers of the feeding outcome in male and female rats. Moreover, prominent activity and connectivity alterations observed in brain areas not typically associated with feeding behavior in both sexes may either indicate novel feeding centers or alternatively suggest the involvement of these substances in behaviors beyond feeding and metabolism. The latter question is of potential translational significance as analogues of both amylin and GLP-1 are clinically utilized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Editorial Board Effort-related motivational effects of methylphenidate: Reversal of the low-effort bias induced by tetrabenazine and enhancement of progressive ratio responding in male and female rats. Synergistic Insights into Positive Allosteric Modulator and Agonist Using Gaussian Accelerated and Tau Random Acceleration Simulations in the Metabotropic Glutamate Receptor 2. Memory enhancement by unconditioned and conditioned heroin withdrawal: role of corticotropin-releasing factor in the central amygdala. Behavioral manifestations and neural mechanisms of empathic pain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1