Sergei Karnup, Stephanie Daugherty, Changfeng Tai, Naoki Yoshimura
{"title":"Response of dorsal horn neurons in mice to high-frequency (kHz) biphasic stimulation is not sensitive to local temperature rise.","authors":"Sergei Karnup, Stephanie Daugherty, Changfeng Tai, Naoki Yoshimura","doi":"10.14814/phy2.70205","DOIUrl":null,"url":null,"abstract":"<p><p>Clinically accepted for treatment of chronic pain 10 kHz-frequency electric spinal cord stimulation (10 kHz-SCS) releases more power in tissue compared to conventional low-frequency (<100 Hz) stimulation due to increased duty cycle. This is equivalent to the release of more heat in a surrounding tissue, which may change the functional state of affected neural elements. In the case of SCS, plausible candidates to be affected by thermal a component of kHz-frequency electric field stimulation (kHz-FS) are dorsal column axons and neurons of the superficial layers of the dorsal horn. In this study, we tested the hypothesis that joule heat produced by kHz-FS modulates neuronal excitability. In slices of the mouse spinal cord, we monitored membrane potential and membrane input resistance in neurons of lamina II during exposure to kHz-FS. Surprisingly, we found no correlation between temperature rise and changes of membrane parameters. Furthermore, the depolarizing effect of kHz-FS was always immediate and remained persistent throughout stimulation, whereas rise of temperature was delayed for 1-2 s and reached its saturation level within the following few seconds. Thus, we concluded that the thermal component has an insignificant role in the mechanism of kHz-FS action.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 3","pages":"e70205"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinically accepted for treatment of chronic pain 10 kHz-frequency electric spinal cord stimulation (10 kHz-SCS) releases more power in tissue compared to conventional low-frequency (<100 Hz) stimulation due to increased duty cycle. This is equivalent to the release of more heat in a surrounding tissue, which may change the functional state of affected neural elements. In the case of SCS, plausible candidates to be affected by thermal a component of kHz-frequency electric field stimulation (kHz-FS) are dorsal column axons and neurons of the superficial layers of the dorsal horn. In this study, we tested the hypothesis that joule heat produced by kHz-FS modulates neuronal excitability. In slices of the mouse spinal cord, we monitored membrane potential and membrane input resistance in neurons of lamina II during exposure to kHz-FS. Surprisingly, we found no correlation between temperature rise and changes of membrane parameters. Furthermore, the depolarizing effect of kHz-FS was always immediate and remained persistent throughout stimulation, whereas rise of temperature was delayed for 1-2 s and reached its saturation level within the following few seconds. Thus, we concluded that the thermal component has an insignificant role in the mechanism of kHz-FS action.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.