Novel lncRNA LncMSTRG.11341.25 Promotes Osteogenic Differentiation of Human Bone Marrow Stem Cells via the miR-939-5p/PAX8 Axis.

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2025-02-06 eCollection Date: 2025-01-01 DOI:10.34133/research.0601
Feifei Ni, Jianjun Li, Qin Yin, Yangyang Chen, Zengwu Shao, Hong Wang
{"title":"Novel lncRNA LncMSTRG.11341.25 Promotes Osteogenic Differentiation of Human Bone Marrow Stem Cells via the miR-939-5p/PAX8 Axis.","authors":"Feifei Ni, Jianjun Li, Qin Yin, Yangyang Chen, Zengwu Shao, Hong Wang","doi":"10.34133/research.0601","DOIUrl":null,"url":null,"abstract":"<p><p>Human bone marrow stem cells (hBMSCs) play an important role during the fracture healing phase. Previous clinical studies by our research group found that fracture healing time was obviously delayed in patients who underwent splenectomy, for combined traumatic fractures and splenic rupture, which is most likely related to the dysregulation of immune inflammatory function of the body after splenectomy. A large number of studies have reported that the inflammatory factor interleukin-1β plays an important role in the multi-directional differentiation ability and immune regulation of BMSC, but its specific regulatory mechanism needs to be further studied. Recently, long noncoding RNAs (lncRNAs) have attracted remarkable attention owing to their close relationship with stem cell osteogenesis and potential role in various bone diseases. In this study, we explored the molecular mechanism of a novel lncRNA, LncMSTRG.11341.25 (LncMSTRG25), in terms of its effects on osteogenic differentiation of hBMSCs. Our results reveal significant up-regulation of LncMSTRG25, osteogenic differentiation markers during the osteogenic differentiation of hBMSCs, and decreased expression of miR-939-5p with an increase in differentiation time. LncMSTRG25 knockdown significantly inhibited the osteogenic ability of hBMSCs. When we knocked down PAX8 alone, we found that the osteogenic ability of hBMSCs was also significantly reduced. The interaction between LncMSTRG25 and PAX8 was verified using the RNA immunoprecipitation assay, RNA pull-down assays, silver staining, and the dual-luciferase reporter. The results show that LncMSTRG25 can function as a sponge to adsorb miR-939-5p, inducing the osteogenic differentiation of hBMSCs by activating PAX8. These findings deepen our understanding of the regulatory role of lncRNA-miRNA-mRNA networks in the immune microenvironment of bone marrow, and highlight the important role played by the spleen as an immune organ in fracture healing.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0601"},"PeriodicalIF":11.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0601","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Human bone marrow stem cells (hBMSCs) play an important role during the fracture healing phase. Previous clinical studies by our research group found that fracture healing time was obviously delayed in patients who underwent splenectomy, for combined traumatic fractures and splenic rupture, which is most likely related to the dysregulation of immune inflammatory function of the body after splenectomy. A large number of studies have reported that the inflammatory factor interleukin-1β plays an important role in the multi-directional differentiation ability and immune regulation of BMSC, but its specific regulatory mechanism needs to be further studied. Recently, long noncoding RNAs (lncRNAs) have attracted remarkable attention owing to their close relationship with stem cell osteogenesis and potential role in various bone diseases. In this study, we explored the molecular mechanism of a novel lncRNA, LncMSTRG.11341.25 (LncMSTRG25), in terms of its effects on osteogenic differentiation of hBMSCs. Our results reveal significant up-regulation of LncMSTRG25, osteogenic differentiation markers during the osteogenic differentiation of hBMSCs, and decreased expression of miR-939-5p with an increase in differentiation time. LncMSTRG25 knockdown significantly inhibited the osteogenic ability of hBMSCs. When we knocked down PAX8 alone, we found that the osteogenic ability of hBMSCs was also significantly reduced. The interaction between LncMSTRG25 and PAX8 was verified using the RNA immunoprecipitation assay, RNA pull-down assays, silver staining, and the dual-luciferase reporter. The results show that LncMSTRG25 can function as a sponge to adsorb miR-939-5p, inducing the osteogenic differentiation of hBMSCs by activating PAX8. These findings deepen our understanding of the regulatory role of lncRNA-miRNA-mRNA networks in the immune microenvironment of bone marrow, and highlight the important role played by the spleen as an immune organ in fracture healing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Novel lncRNA LncMSTRG.11341.25 Promotes Osteogenic Differentiation of Human Bone Marrow Stem Cells via the miR-939-5p/PAX8 Axis. Acoustic Transmitted Decellularized Fish Bladder for Tympanic Membrane Regeneration. Long-Range Azimuthal Correlation, Entanglement, and Bell Inequality Violation by Spinning Gluons at the Large Hadron Collider. Inhibition of Mitochondrial Fission Reverses Simulated Microgravity-Induced Osteoblast Dysfunction by Enhancing Mechanotransduction and Epigenetic Modification. Skatole Alleviates Osteoarthritis by Reprogramming Macrophage Polarization and Protecting Chondrocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1