A spatial inventory of freshwater macroinvertebrate occurrences in the Guineo-Congolian biodiversity hotspot.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2025-02-06 DOI:10.1038/s41597-025-04471-5
Emmanuel O Akindele, Abiodun M Adedapo, Oluwaseun T Akinpelu, Esther D Kowobari, Oluwatosin C Folorunso, Ibrahim R Fagbohun, Tolulope A Oladeji, Olanrewaju O Aliu, Oluwatobiloba S Adenola, Babasola W Adu, Francis O Arimoro, Sylvester S Ogbogu, Sami Domisch
{"title":"A spatial inventory of freshwater macroinvertebrate occurrences in the Guineo-Congolian biodiversity hotspot.","authors":"Emmanuel O Akindele, Abiodun M Adedapo, Oluwaseun T Akinpelu, Esther D Kowobari, Oluwatosin C Folorunso, Ibrahim R Fagbohun, Tolulope A Oladeji, Olanrewaju O Aliu, Oluwatobiloba S Adenola, Babasola W Adu, Francis O Arimoro, Sylvester S Ogbogu, Sami Domisch","doi":"10.1038/s41597-025-04471-5","DOIUrl":null,"url":null,"abstract":"<p><p>The Guineo-Congolian region, extending from Guinea in West Africa to the central part of Africa, is considered an important biodiversity hotspot in the Afrotropics. Aside from the underreporting and underestimation of freshwater ecosystems, the challenges regarding incorrect coordinates and taxonomical inaccuracies in freshwater species occurrence data pose another major hurdle that may hinder freshwater conservation efforts in the hotspot. Hence, for any biogeographic analysis, species distribution modelling or conservation initiative, it is crucial to use datasets that are, to the largest possible extent, free of spatial and taxonomic errors. We present the final output of 8,809 occurrences consisting of 4 phyla, eight classes, 32 orders, and 1,104 species. We also added the Hydrography90m stream network attributes to the macroinvertebrate occurrence records, such that the data spans across 2,890 sub-catchments and Strahler stream orders 1-12. These records are considered valid and can be used for biogeographic analysis of freshwater macroinvertebrates in this important yet understudied freshwater biodiversity hotspot.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"227"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04471-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Guineo-Congolian region, extending from Guinea in West Africa to the central part of Africa, is considered an important biodiversity hotspot in the Afrotropics. Aside from the underreporting and underestimation of freshwater ecosystems, the challenges regarding incorrect coordinates and taxonomical inaccuracies in freshwater species occurrence data pose another major hurdle that may hinder freshwater conservation efforts in the hotspot. Hence, for any biogeographic analysis, species distribution modelling or conservation initiative, it is crucial to use datasets that are, to the largest possible extent, free of spatial and taxonomic errors. We present the final output of 8,809 occurrences consisting of 4 phyla, eight classes, 32 orders, and 1,104 species. We also added the Hydrography90m stream network attributes to the macroinvertebrate occurrence records, such that the data spans across 2,890 sub-catchments and Strahler stream orders 1-12. These records are considered valid and can be used for biogeographic analysis of freshwater macroinvertebrates in this important yet understudied freshwater biodiversity hotspot.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A chromosome-level genome assembly of the mud carp (Cirrhinus molitorella). A semantic approach to mapping the Provenance Ontology to Basic Formal Ontology. Author Correction: Global Crop-Specific Fertilization Dataset from 1961-2019. Data on the diet and nutrition of urban and rural bumblebees. SpiDa-MRI: behavioral and (f)MRI data of adults with fear of spiders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1