miR-223-3p Targets KIF4A and Promotes the Oxidative Stress-Mediated Apoptosis of Breast Cancer Cells.

IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Cancer Biotherapy and Radiopharmaceuticals Pub Date : 2025-02-06 DOI:10.1089/cbr.2024.0102
Yinghui Zhi, Wenshan Zhang, Zhenyu Wu, Yan Chen, Liang Feng, Jing He, Feng Wang, Huan Liu
{"title":"miR-223-3p Targets <i>KIF4A</i> and Promotes the Oxidative Stress-Mediated Apoptosis of Breast Cancer Cells.","authors":"Yinghui Zhi, Wenshan Zhang, Zhenyu Wu, Yan Chen, Liang Feng, Jing He, Feng Wang, Huan Liu","doi":"10.1089/cbr.2024.0102","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> The abnormal expression of kinase family member 4A (<i>KIF4A</i>) is linked to breast cancer progression, with numerous miRNAs exhibiting abnormal expression. Thus, there is an urgent need to investigate the mechanisms of action of miRNAs and their target genes for the diagnosis and treatment of breast cancer. <b><i>Materials and Methods:</i></b> A bioinformatics analysis was conducted to screen for <i>KIF4A</i>, a key gene involved in oxidative stress in breast cancer cells. Using CCK8, EdU, cell healing, and Transwell assays, the knockdown of <i>KIF4A</i> was found to effectively inhibit the proliferation, migration, and invasion of breast cancer cells. Dual-luciferase assay and Western blotting confirmed that miR-223-3p targets and regulates <i>KIF4A</i> expression. The impact of miR-223-3p and <i>KIF4A</i> on oxidative stress in breast cancer cells was assessed through reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) measurements. Flow cytometry was used to evaluate tumor cell apoptosis. <b><i>Results:</i></b> Our results suggest that <i>KIF4A</i> is a downstream target of miR-223-3p. miR-223-3p inhibits the proliferation and invasion of breast cancer cells by directly targeting and downregulating <i>KIF4A</i>. Importantly, we found that miR-223-3p and <i>KIF4A</i> play important roles in regulating oxidative stress and apoptosis in breast cancer cells. Specifically, miR-223-3p promoted apoptosis by inhibiting the expression of <i>KIF4A</i>, increasing the accumulation level of ROS and MDA, and inhibiting the activity of SOD while <i>KIF4A</i> was overexpressed.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2024.0102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The abnormal expression of kinase family member 4A (KIF4A) is linked to breast cancer progression, with numerous miRNAs exhibiting abnormal expression. Thus, there is an urgent need to investigate the mechanisms of action of miRNAs and their target genes for the diagnosis and treatment of breast cancer. Materials and Methods: A bioinformatics analysis was conducted to screen for KIF4A, a key gene involved in oxidative stress in breast cancer cells. Using CCK8, EdU, cell healing, and Transwell assays, the knockdown of KIF4A was found to effectively inhibit the proliferation, migration, and invasion of breast cancer cells. Dual-luciferase assay and Western blotting confirmed that miR-223-3p targets and regulates KIF4A expression. The impact of miR-223-3p and KIF4A on oxidative stress in breast cancer cells was assessed through reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) measurements. Flow cytometry was used to evaluate tumor cell apoptosis. Results: Our results suggest that KIF4A is a downstream target of miR-223-3p. miR-223-3p inhibits the proliferation and invasion of breast cancer cells by directly targeting and downregulating KIF4A. Importantly, we found that miR-223-3p and KIF4A play important roles in regulating oxidative stress and apoptosis in breast cancer cells. Specifically, miR-223-3p promoted apoptosis by inhibiting the expression of KIF4A, increasing the accumulation level of ROS and MDA, and inhibiting the activity of SOD while KIF4A was overexpressed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
2.90%
发文量
87
审稿时长
3 months
期刊介绍: Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies. The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.
期刊最新文献
miR-223-3p Targets KIF4A and Promotes the Oxidative Stress-Mediated Apoptosis of Breast Cancer Cells. Dosimetry Assessment in Predicting Treatment Outcomes Following Yttrium-90 Transarterial Radioembolization of Hepatic Tumors. Is There Novel 18F-FDG Biodistribution in the Digital PET/CT Era? A Real-World Data Analysis. Exploring the Role of [68Ga]Ga-DOTAGA-IAC and Comparison of Its Diagnostic Performance with [18F]F-FDG PET/CT in Radioiodine Refractory Differentiated Thyroid Carcinoma. Generalized Seizure as an Acute post-Lu177-DOTATATE Side Effect in a Case of Recurrent Meningioma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1