Shifting the substrate scope of dimeric pyranose oxidase from monosaccharide to glycoside preference through oligomeric state modification.

Anja Kostelac, Enikő Hermann, Clemens Peterbauer, Chris Oostenbrink, Dietmar Haltrich
{"title":"Shifting the substrate scope of dimeric pyranose oxidase from monosaccharide to glycoside preference through oligomeric state modification.","authors":"Anja Kostelac, Enikő Hermann, Clemens Peterbauer, Chris Oostenbrink, Dietmar Haltrich","doi":"10.1111/febs.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Pyranose oxidase (POx) and C-glycoside oxidase (CGOx) are FAD-dependent oxidoreductases belonging to the glucose-methanol-choline oxidoreductase superfamily and share the same sequence space. Despite a shared structural fold, these two members possess homologous domains that enable (arm and head domain) or disable (insertion-1 domain and barrel-shaped bottom) oligomerization. POxs with a higher oligomerization state (dimeric or tetrameric) exclusively catalyze the oxidation of monosaccharides (d-glucose, d-xylose). In contrast, the monomeric state of POxs/CGOxs is observed to prefer glycosides (homoorientin, phlorizin) and has low activity with free monosaccharides. We aimed to engineer dimeric POx from Kitasatospora aureofaciens (KaPOx) to form a functional monomer, and monomeric POx/CGOx from Streptomyces canus (ScPOx) to a dimeric structure. Deletion of the head and arm domains of the KaPOx subunit resulted in enzyme variants with a less hydrophobic surface, thus affecting its oligomerization. These monomeric KaPOx variants KaPOx_xal and KaPOx_xalh resembled monomeric wild-type POxs/CGOxs and preferred glycosides as substrates over monosaccharides with catalytic efficiencies for phlorizin being 24 × 10<sup>6</sup> higher compared to those for d-xylose. The wild-type dimeric KaPOx showed no activity towards glycosides. We hypothesize that KaPOx_xalh is unable to react with monosaccharides because the introduced mutations alter the positions of monosaccharide-binding residues. The inability of KaPOx to react with glycosides is likely caused by steric hindrance and the inaccessibility of the active site to bulky glycosides due to dimerization. The attempt to engineer ScPOx into a dimeric structure failed at the stage of soluble expression, likely due to exposed hydrophobic patches and aggregation.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pyranose oxidase (POx) and C-glycoside oxidase (CGOx) are FAD-dependent oxidoreductases belonging to the glucose-methanol-choline oxidoreductase superfamily and share the same sequence space. Despite a shared structural fold, these two members possess homologous domains that enable (arm and head domain) or disable (insertion-1 domain and barrel-shaped bottom) oligomerization. POxs with a higher oligomerization state (dimeric or tetrameric) exclusively catalyze the oxidation of monosaccharides (d-glucose, d-xylose). In contrast, the monomeric state of POxs/CGOxs is observed to prefer glycosides (homoorientin, phlorizin) and has low activity with free monosaccharides. We aimed to engineer dimeric POx from Kitasatospora aureofaciens (KaPOx) to form a functional monomer, and monomeric POx/CGOx from Streptomyces canus (ScPOx) to a dimeric structure. Deletion of the head and arm domains of the KaPOx subunit resulted in enzyme variants with a less hydrophobic surface, thus affecting its oligomerization. These monomeric KaPOx variants KaPOx_xal and KaPOx_xalh resembled monomeric wild-type POxs/CGOxs and preferred glycosides as substrates over monosaccharides with catalytic efficiencies for phlorizin being 24 × 106 higher compared to those for d-xylose. The wild-type dimeric KaPOx showed no activity towards glycosides. We hypothesize that KaPOx_xalh is unable to react with monosaccharides because the introduced mutations alter the positions of monosaccharide-binding residues. The inability of KaPOx to react with glycosides is likely caused by steric hindrance and the inaccessibility of the active site to bulky glycosides due to dimerization. The attempt to engineer ScPOx into a dimeric structure failed at the stage of soluble expression, likely due to exposed hydrophobic patches and aggregation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crystal structure of Anopheles gambiae actin depolymerizing factor explains high affinity to monomeric actin. FXR suppress Müller cell activation by regulating cGAS/STING pathway in diabetic retinopathy. Redox imbalance and hypoxia-inducible factors: a multifaceted crosstalk. Saccharomyces cerevisiae Dmo2p is required for the stability and maturation of newly translated Cox2p. Past, present, and future strategies for detecting and quantifying circular RNA variants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1