{"title":"A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent","authors":"Shuche Wang;Vincent Y. F. Tan","doi":"10.1109/TSP.2025.3539883","DOIUrl":null,"url":null,"abstract":"Distributed gradient descent algorithms have come to the fore in modern machine learning, especially in parallelizing the handling of large datasets that are distributed across several workers. However, scant attention has been paid to analyzing the behavior of distributed gradient descent algorithms in the presence of adversarial corruptions instead of random noise. In this paper, we formulate a novel problem in which adversarial corruptions are present in a distributed learning system. We show how to use ideas from (lazy) mirror descent to design a corruption-tolerant distributed optimization algorithm. Extensive convergence analysis for (strongly) convex loss functions is provided for different choices of the stepsize. We carefully optimize the stepsize schedule to accelerate the convergence of the algorithm, while at the same time amortizing the effect of the corruption over time. Experiments based on linear regression, support vector classification, and softmax classification on the MNIST dataset corroborate our theoretical findings.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"827-842"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10877931/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed gradient descent algorithms have come to the fore in modern machine learning, especially in parallelizing the handling of large datasets that are distributed across several workers. However, scant attention has been paid to analyzing the behavior of distributed gradient descent algorithms in the presence of adversarial corruptions instead of random noise. In this paper, we formulate a novel problem in which adversarial corruptions are present in a distributed learning system. We show how to use ideas from (lazy) mirror descent to design a corruption-tolerant distributed optimization algorithm. Extensive convergence analysis for (strongly) convex loss functions is provided for different choices of the stepsize. We carefully optimize the stepsize schedule to accelerate the convergence of the algorithm, while at the same time amortizing the effect of the corruption over time. Experiments based on linear regression, support vector classification, and softmax classification on the MNIST dataset corroborate our theoretical findings.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.