βIV spectrin abundancy, cellular distribution and sensitivity to AKT/GSK3 regulation in schizophrenia

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Psychiatry Pub Date : 2025-02-07 DOI:10.1038/s41380-025-02917-1
Jessica Di Re, Michela Marini, Syed Ibrar Hussain, Aditya K. Singh, Akshaya Venkatesh, Musaad A. Alshammari, Tahani K. Alshammari, Abdul-Rizaq Ali Hamoud, Ali Sajid Imami, Zahra Haghighijoo, Nickolas Fularcyzk, Laura Stertz, Derek Hawes, Angela Mosebarger, Jordan Jernigan, Claire Chaljub, Ralda Nehme, Consuelo Walss-Bass, Anton Schulmann, Marquis P. Vawter, Robert McCullumsmith, Robert D. Damoiseaux, Agenor Limon, Demetrio Labate, Michael F. Wells, Fernanda Laezza
{"title":"βIV spectrin abundancy, cellular distribution and sensitivity to AKT/GSK3 regulation in schizophrenia","authors":"Jessica Di Re, Michela Marini, Syed Ibrar Hussain, Aditya K. Singh, Akshaya Venkatesh, Musaad A. Alshammari, Tahani K. Alshammari, Abdul-Rizaq Ali Hamoud, Ali Sajid Imami, Zahra Haghighijoo, Nickolas Fularcyzk, Laura Stertz, Derek Hawes, Angela Mosebarger, Jordan Jernigan, Claire Chaljub, Ralda Nehme, Consuelo Walss-Bass, Anton Schulmann, Marquis P. Vawter, Robert McCullumsmith, Robert D. Damoiseaux, Agenor Limon, Demetrio Labate, Michael F. Wells, Fernanda Laezza","doi":"10.1038/s41380-025-02917-1","DOIUrl":null,"url":null,"abstract":"<p>Schizophrenia (SCZ) is a complex psychiatric disorder with unclear biological mechanisms. Spectrins, cytoskeletal proteins linked to neurodevelopmental disorders, are regulated by the AKT/GSK3 pathway, which is implicated in SCZ. However, the impact of SCZ-related dysregulation of this pathway on spectrin expression and distribution remains unexplored. Here, we show that βIV spectrin protein levels were reduced in neurons of the dorsolateral prefrontal cortex in SCZ postmortem samples compared to healthy control (HC) from the Human Brain Collection Core (HBCC). To investigate potential links between βIV spectrin and the AKT/GSK3 pathway, we analyzed the PsychEncode dataset, revealing elevated SPTBN4 and AKT2 mRNA levels with correlated gene transcription in both HCs and individuals with SCZ. Next, computational tools were employed to identify potential AKT and GSK3 phosphorylation sites on βIV spectrin, and two GSK3 sites were validated through in vitro assays. To assess whether βIV spectrin distribution and sensitivity to AKT/GSK3 are altered in SCZ, we used iPSC-derived neurons from two independent cohorts of patients with significantly increased familial genetic risk for the disorder. Alteration in βIV spectrin levels and sensitivity to AKT/GSK3 inhibitors were consistently observed across both cohorts. Importantly, a Random Forest classifier applied to βIV spectrin imaging achieved up to 98% accuracy in classifying cells by diagnosis in postmortem samples, and by diagnosis or diagnosis × perturbation in iPSC samples. These findings reveal altered βIV spectrin levels and AKT/GSK3 sensitivity in SCZ, identifying βIV spectrin image-based endophenotypes as robust, generalizable predictive biomarkers of SCZ, with the potential for scalable clinical applications.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"11 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02917-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia (SCZ) is a complex psychiatric disorder with unclear biological mechanisms. Spectrins, cytoskeletal proteins linked to neurodevelopmental disorders, are regulated by the AKT/GSK3 pathway, which is implicated in SCZ. However, the impact of SCZ-related dysregulation of this pathway on spectrin expression and distribution remains unexplored. Here, we show that βIV spectrin protein levels were reduced in neurons of the dorsolateral prefrontal cortex in SCZ postmortem samples compared to healthy control (HC) from the Human Brain Collection Core (HBCC). To investigate potential links between βIV spectrin and the AKT/GSK3 pathway, we analyzed the PsychEncode dataset, revealing elevated SPTBN4 and AKT2 mRNA levels with correlated gene transcription in both HCs and individuals with SCZ. Next, computational tools were employed to identify potential AKT and GSK3 phosphorylation sites on βIV spectrin, and two GSK3 sites were validated through in vitro assays. To assess whether βIV spectrin distribution and sensitivity to AKT/GSK3 are altered in SCZ, we used iPSC-derived neurons from two independent cohorts of patients with significantly increased familial genetic risk for the disorder. Alteration in βIV spectrin levels and sensitivity to AKT/GSK3 inhibitors were consistently observed across both cohorts. Importantly, a Random Forest classifier applied to βIV spectrin imaging achieved up to 98% accuracy in classifying cells by diagnosis in postmortem samples, and by diagnosis or diagnosis × perturbation in iPSC samples. These findings reveal altered βIV spectrin levels and AKT/GSK3 sensitivity in SCZ, identifying βIV spectrin image-based endophenotypes as robust, generalizable predictive biomarkers of SCZ, with the potential for scalable clinical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
期刊最新文献
Gestational autoantibody exposure impacts early brain development in a rat model of MAR autism The role of plasma inflammatory markers in late-life depression and conversion to dementia: a 3-year follow-up study βIV spectrin abundancy, cellular distribution and sensitivity to AKT/GSK3 regulation in schizophrenia Correction: Probing the genetic and molecular correlates of connectome alterations in obsessive-compulsive disorder. Maternal immune activation imprints translational dysregulation and differential MAP2 phosphorylation in descendant neural stem cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1