An End-to-End Quantitative Identification Method for Mining Wire Rope Damage Based on Time Series Classification and Deep Learning

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2025-02-09 DOI:10.1007/s10921-025-01166-0
Chun Zhao, Jie Tian, Hongyao Wang, Zhangwen Shi, Xingjun Wang, Jingwen Huang, Lingguo Tang
{"title":"An End-to-End Quantitative Identification Method for Mining Wire Rope Damage Based on Time Series Classification and Deep Learning","authors":"Chun Zhao,&nbsp;Jie Tian,&nbsp;Hongyao Wang,&nbsp;Zhangwen Shi,&nbsp;Xingjun Wang,&nbsp;Jingwen Huang,&nbsp;Lingguo Tang","doi":"10.1007/s10921-025-01166-0","DOIUrl":null,"url":null,"abstract":"<div><p>Mining wire rope (MWR) is an important part of mine hoisting equipment and plays a key role in mining operations. Damage to these ropes can significantly reduce production efficiency and pose serious safety risks to workers. Therefore, quantitatively identifying damage in MWR is of great importance. Traditional methods for damage signal identification rely on manual feature extraction (MFE), which depends heavily on experience and lacks stability and flexibility. This paper proposes an end-to-end (E2E) quantitative identification model for MWR damage based on time series classification (TSC) and deep learning (DL). Unlike traditional methods, the E2E model learns features directly from the one-dimensional raw signals of MWR damage and does not require MFE. In order to test its validity and versatility, experiments were conducted on three different datasets. The results show that the E2E method performs well in quantitatively identifying MWR damage compared to other methods and this method meets the requirements of the mining industry in terms of precision and efficiency to ensure safe and reliable operation of mining work.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01166-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Mining wire rope (MWR) is an important part of mine hoisting equipment and plays a key role in mining operations. Damage to these ropes can significantly reduce production efficiency and pose serious safety risks to workers. Therefore, quantitatively identifying damage in MWR is of great importance. Traditional methods for damage signal identification rely on manual feature extraction (MFE), which depends heavily on experience and lacks stability and flexibility. This paper proposes an end-to-end (E2E) quantitative identification model for MWR damage based on time series classification (TSC) and deep learning (DL). Unlike traditional methods, the E2E model learns features directly from the one-dimensional raw signals of MWR damage and does not require MFE. In order to test its validity and versatility, experiments were conducted on three different datasets. The results show that the E2E method performs well in quantitatively identifying MWR damage compared to other methods and this method meets the requirements of the mining industry in terms of precision and efficiency to ensure safe and reliable operation of mining work.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Synthesis of Fe3O4 Encapsulated with Lemon Yellow for Application in Magnetic Particle Inspection Fly Ash Blended Cement Resistivity Monitoring Using Carbon Screen-Printed Electrodes Innovative IoT-Integrated Sensors for Real-Time Monitoring of Chloride Penetration in Concrete Structures Electrical Conductivity Mapping Evaluation of a Unidirectional Carbon Fiber Composite Material Based on a Multiobjective Inversion Method A Comparative Study of Rigid Three-Dimensional Image Registration Methods for Powder Bed Fusion with Laser Beam of Metals Using a Gold Standard Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1