Transcutaneous electrical acustimulation promotes wound healing in mice by modulating signaling molecules and mitochondria function

IF 1.8 4区 医学 Q3 DERMATOLOGY Archives of Dermatological Research Pub Date : 2025-02-08 DOI:10.1007/s00403-024-03754-y
Rong Han, Menghua Chen, Wang Peng, Jianbo Yue, Jinlian Hu
{"title":"Transcutaneous electrical acustimulation promotes wound healing in mice by modulating signaling molecules and mitochondria function","authors":"Rong Han,&nbsp;Menghua Chen,&nbsp;Wang Peng,&nbsp;Jianbo Yue,&nbsp;Jinlian Hu","doi":"10.1007/s00403-024-03754-y","DOIUrl":null,"url":null,"abstract":"<div><p>Previous research has identified a variety of factors that contribute to the development and maintenance of wounds. Concurrently, electroacupuncture has been demonstrated to facilitate wound healing. However, the effects of transcutaneous electrical acustimulation (TEA) on wound healing, as well as its relationship with key factors such as Wnt3a, TGF-β, Akt, c-Myc, VEGF-A, SP1, nitric oxide (NO), and mitochondrial function, remain largely unexplored. We hypothesize that TEA will activate the signaling factors and enhance mitochondrial functions to promote the repair of skin wounds in mice. An in vivo experimental study was conducted utilizing mouse models with skin wounds. The study comprised three groups: a TEA treatment with wound group, a skin wound model group, and a control group. Wound areas were measured by calculating the product of the length and width of each wound using calipers. Single-cell suspensions were prepared by excising the wound and the immediately surrounding tissue. These suspensions were stained with Trypan blue to assess cell viability, with specific probes to measure the rate of reactive oxygen species (ROS) positivity, and with reagents to quantify NO content. Western blotting (WB) was employed to evaluate protein levels associated with tissue changes, while quantitative polymerase chain reaction (qPCR) was used to assess RNA expression levels. Immunofluorescence staining was performed to visualize protein content and other relevant cellular structures within tissue sections. TEA exhibited anti-inflammatory properties and promoted wound healing in mice. Western blot analysis revealed that TEA enhanced the expression of proteins associated with Wnt3a, TGF-β, Akt, c-Myc, VEGF-A, and SP1 during the wound healing process. Immunofluorescence staining of tissue sections indicated that TEA upregulated the expression of COL1A1, MFN1, GRP75, GRP78, GRP75/ROS, GRP78/ROS, ISCU, and UCP1 while downregulating FIS1. Additionally, qPCR results demonstrated that TEA promoted the expression of IL-10 and miRNA205-5p while inhibiting MMP9 levels. TEA modulates various signaling molecules, influences chaperone proteins related to stress recovery responses, along with mitochondrial dynamics and metabolism.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8203,"journal":{"name":"Archives of Dermatological Research","volume":"317 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00403-024-03754-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Dermatological Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00403-024-03754-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous research has identified a variety of factors that contribute to the development and maintenance of wounds. Concurrently, electroacupuncture has been demonstrated to facilitate wound healing. However, the effects of transcutaneous electrical acustimulation (TEA) on wound healing, as well as its relationship with key factors such as Wnt3a, TGF-β, Akt, c-Myc, VEGF-A, SP1, nitric oxide (NO), and mitochondrial function, remain largely unexplored. We hypothesize that TEA will activate the signaling factors and enhance mitochondrial functions to promote the repair of skin wounds in mice. An in vivo experimental study was conducted utilizing mouse models with skin wounds. The study comprised three groups: a TEA treatment with wound group, a skin wound model group, and a control group. Wound areas were measured by calculating the product of the length and width of each wound using calipers. Single-cell suspensions were prepared by excising the wound and the immediately surrounding tissue. These suspensions were stained with Trypan blue to assess cell viability, with specific probes to measure the rate of reactive oxygen species (ROS) positivity, and with reagents to quantify NO content. Western blotting (WB) was employed to evaluate protein levels associated with tissue changes, while quantitative polymerase chain reaction (qPCR) was used to assess RNA expression levels. Immunofluorescence staining was performed to visualize protein content and other relevant cellular structures within tissue sections. TEA exhibited anti-inflammatory properties and promoted wound healing in mice. Western blot analysis revealed that TEA enhanced the expression of proteins associated with Wnt3a, TGF-β, Akt, c-Myc, VEGF-A, and SP1 during the wound healing process. Immunofluorescence staining of tissue sections indicated that TEA upregulated the expression of COL1A1, MFN1, GRP75, GRP78, GRP75/ROS, GRP78/ROS, ISCU, and UCP1 while downregulating FIS1. Additionally, qPCR results demonstrated that TEA promoted the expression of IL-10 and miRNA205-5p while inhibiting MMP9 levels. TEA modulates various signaling molecules, influences chaperone proteins related to stress recovery responses, along with mitochondrial dynamics and metabolism.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
3.30%
发文量
30
审稿时长
4-8 weeks
期刊介绍: Archives of Dermatological Research is a highly rated international journal that publishes original contributions in the field of experimental dermatology, including papers on biochemistry, morphology and immunology of the skin. The journal is among the few not related to dermatological associations or belonging to respective societies which guarantees complete independence. This English-language journal also offers a platform for review articles in areas of interest for dermatologists and for publication of innovative clinical trials.
期刊最新文献
Circle hair and pigtail hair at newborn skin - a new transient sign Challenges in diagnosis and treatment of pediatric psoriasis and atopic dermatitis Improvement of medical student dermatologic knowledge with combined educational module and participation in skin screening clinic Analysis of factors affecting treatment adherence in patients with keloid disease Dermatological findings in bladder cancer: relationship between clinical and paraneoplastic syndromes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1