Improvement of glucocorticoid sensitivity and attenuation of pulmonary allergic reactions by exogenous supplementation with betaine in HDM and LPS-induced allergic mouse model

IF 4.6 2区 医学 Q2 ALLERGY Clinical and Translational Allergy Pub Date : 2025-02-08 DOI:10.1002/clt2.70039
Qing Wang, Wen He, Yufeng Zhou, Yun Liu, Xiaoling Li, Yingwen Wang, Jiayu Wang, Xiao Han, Xiaobo Zhang
{"title":"Improvement of glucocorticoid sensitivity and attenuation of pulmonary allergic reactions by exogenous supplementation with betaine in HDM and LPS-induced allergic mouse model","authors":"Qing Wang,&nbsp;Wen He,&nbsp;Yufeng Zhou,&nbsp;Yun Liu,&nbsp;Xiaoling Li,&nbsp;Yingwen Wang,&nbsp;Jiayu Wang,&nbsp;Xiao Han,&nbsp;Xiaobo Zhang","doi":"10.1002/clt2.70039","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Childhood asthma is a heterogeneous disease that exhibits different characteristics and varying severity; however, the metabolite alterations underlying the difference in asthma severity, especially in severe asthma, are not well understood. The aim of this study was to identify the plasma metabolic profile of children with different asthma severity and explore the potential intervention targets in severe asthma and glucocorticoid resistance.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Untargeted liquid chromatography mass spectrometry was utilized to analyze plasma metabolites in 54 children with mild-to-moderate asthma, 50 children with severe asthma and 39 healthy controls. Multivariate statistical analyses were used to explore plasma metabolic alterations that were strongly associated with asthma severity. Meanwhile, the severe allergic airway inflammation mice with glucocorticoid resistance were constructed to validate the potential therapeutic capacity of metabolites.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The plasma metabolic profiles of children with mild to moderate asthma and severe asthma exhibited significant alterations. The distinct plasma metabolite shifts were accompanied by functional alterations in lipid metabolism, particularly choline metabolism, glycerophospholipids and sphingolipid metabolism. 11-cis-retinol, LysoPC (20:4 [8Z,11Z,14Z,17Z]), and glycerophosphatidylcholine were associated with exacerbated airway inflammation and lung function. Furthermore, 2-Hydroxyestradiol, LysoPC (18:3 [6Z,9Z,12Z]), zeaxanthin, and betaine were shifted exclusively in the severe asthma group and may serve as potential biomarkers. Subsequent in vivo studies demonstrated that betaine supplementation partially improved glucocorticoid resistance.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Overall, children with different asthma severity displayed distinct plasma metabolic patterns. These may contribute to the difference in response to glucocorticoids in childhood asthma and could be potential targets and interventions.</p>\n </section>\n </div>","PeriodicalId":10334,"journal":{"name":"Clinical and Translational Allergy","volume":"15 2","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clt2.70039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Allergy","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clt2.70039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Childhood asthma is a heterogeneous disease that exhibits different characteristics and varying severity; however, the metabolite alterations underlying the difference in asthma severity, especially in severe asthma, are not well understood. The aim of this study was to identify the plasma metabolic profile of children with different asthma severity and explore the potential intervention targets in severe asthma and glucocorticoid resistance.

Methods

Untargeted liquid chromatography mass spectrometry was utilized to analyze plasma metabolites in 54 children with mild-to-moderate asthma, 50 children with severe asthma and 39 healthy controls. Multivariate statistical analyses were used to explore plasma metabolic alterations that were strongly associated with asthma severity. Meanwhile, the severe allergic airway inflammation mice with glucocorticoid resistance were constructed to validate the potential therapeutic capacity of metabolites.

Results

The plasma metabolic profiles of children with mild to moderate asthma and severe asthma exhibited significant alterations. The distinct plasma metabolite shifts were accompanied by functional alterations in lipid metabolism, particularly choline metabolism, glycerophospholipids and sphingolipid metabolism. 11-cis-retinol, LysoPC (20:4 [8Z,11Z,14Z,17Z]), and glycerophosphatidylcholine were associated with exacerbated airway inflammation and lung function. Furthermore, 2-Hydroxyestradiol, LysoPC (18:3 [6Z,9Z,12Z]), zeaxanthin, and betaine were shifted exclusively in the severe asthma group and may serve as potential biomarkers. Subsequent in vivo studies demonstrated that betaine supplementation partially improved glucocorticoid resistance.

Conclusions

Overall, children with different asthma severity displayed distinct plasma metabolic patterns. These may contribute to the difference in response to glucocorticoids in childhood asthma and could be potential targets and interventions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical and Translational Allergy
Clinical and Translational Allergy Immunology and Microbiology-Immunology
CiteScore
7.50
自引率
4.50%
发文量
117
审稿时长
12 weeks
期刊介绍: Clinical and Translational Allergy, one of several journals in the portfolio of the European Academy of Allergy and Clinical Immunology, provides a platform for the dissemination of allergy research and reviews, as well as EAACI position papers, task force reports and guidelines, amongst an international scientific audience. Clinical and Translational Allergy accepts clinical and translational research in the following areas and other related topics: asthma, rhinitis, rhinosinusitis, drug hypersensitivity, allergic conjunctivitis, allergic skin diseases, atopic eczema, urticaria, angioedema, venom hypersensitivity, anaphylaxis, food allergy, immunotherapy, immune modulators and biologics, animal models of allergic disease, immune mechanisms, or any other topic related to allergic disease.
期刊最新文献
Expert opinion on gray areas in asthma management: A lesson from the innovative project “revolution in asthma” of the Italian thoracic society (AIPO-ITS) Improvement of glucocorticoid sensitivity and attenuation of pulmonary allergic reactions by exogenous supplementation with betaine in HDM and LPS-induced allergic mouse model Development of the symptomatic dermographism quality of life questionnaire Identifying integrins secreted in serum: Unveiling their correlation with inflammation and asthma—A preliminary study Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1