{"title":"Applications of Liquid-Liquid Phase Separation in Biosensing.","authors":"Huizhen Huang, Jun Hu","doi":"10.1002/cbic.202500028","DOIUrl":null,"url":null,"abstract":"<p><p>Phase separation, particularly liquid-liquid phase separation (LLPS), has emerged as a powerful tool in biological research, offering unique advantages for visualizing and analyzing biomolecular interactions. This review highlights recent advances in leveraging LLPS to develop experimental techniques for studying protein-protein interactions (PPIs), protein-RNA interactions, and enzyme activity. The integration of LLPS with advanced techniques has expanded its applications, offering new possibilities for unraveling the complexities of cellular function and disease mechanisms. Looking forward, the development of more versatile, sensitive, and targeted LLPS-based methods is poised to transform molecular biology, providing deeper insights into cellular dynamics and facilitating therapeutic advancements.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500028"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phase separation, particularly liquid-liquid phase separation (LLPS), has emerged as a powerful tool in biological research, offering unique advantages for visualizing and analyzing biomolecular interactions. This review highlights recent advances in leveraging LLPS to develop experimental techniques for studying protein-protein interactions (PPIs), protein-RNA interactions, and enzyme activity. The integration of LLPS with advanced techniques has expanded its applications, offering new possibilities for unraveling the complexities of cellular function and disease mechanisms. Looking forward, the development of more versatile, sensitive, and targeted LLPS-based methods is poised to transform molecular biology, providing deeper insights into cellular dynamics and facilitating therapeutic advancements.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).