Autophagy is involved in the toxicity of the biocontrol agent GC16 against Tetranychus pueraricola (Acari: Tetranychidae) based on transcriptomic and proteomic analyses.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-02-07 DOI:10.1186/s12864-025-11312-7
Yanyan He, Guangzu Du, Guang Wang, Huiming Guan, Shusheng Zhu, Bin Chen, Xiahong He, Youyong Zhu
{"title":"Autophagy is involved in the toxicity of the biocontrol agent GC16 against Tetranychus pueraricola (Acari: Tetranychidae) based on transcriptomic and proteomic analyses.","authors":"Yanyan He, Guangzu Du, Guang Wang, Huiming Guan, Shusheng Zhu, Bin Chen, Xiahong He, Youyong Zhu","doi":"10.1186/s12864-025-11312-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>GC16 is a novel pesticide with acaricidal properties against the spider mite Tetranychus pueraricola (Ehara & Gotoh). Its physiological mechanisms have been described previously, but its molecular mechanisms of action remain unclear. Thus, we aimed to explore the acaricidal mechanisms of GC16 through transcriptomic and proteomic analyses. The results were verified using transmission electron microscopy (TEM), immunofluorescence assay, and western blotting.</p><p><strong>Results: </strong>Transcriptomic and proteomic analyses revealed 2717 differentially expressed genes (DEGs) and 374 differentially expressed proteins (DEPs) between the GC16-treated and control mites. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs and DEPs were enriched in the autophagy pathway. TEM showed that the number of autophagosomes and autolysosomes was higher in the GC16-treated mites than in the control mites. Immunofluorescence assay and western blot results consistently indicated that GC16 treatment significantly enhanced the relative expression of the autophagy protein LC3 in insect Sf9 cells. The intracellular calcium concentration in the GC16-treated Sf9 cells was 2.30 times higher than that in the control cells, suggesting that GC16 disrupted calcium homeostasis and potentially acted as a calcium-driven nerve agent.</p><p><strong>Conclusions: </strong>Autophagy is involved in the toxicity of GC16 against T. pueraricola and may be activated by elevated Ca<sup>2+</sup> levels. This study reveals the molecular insecticidal mechanisms of GC16 and provides rationale for the field application of GC16 to control pest mites.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"119"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11312-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: GC16 is a novel pesticide with acaricidal properties against the spider mite Tetranychus pueraricola (Ehara & Gotoh). Its physiological mechanisms have been described previously, but its molecular mechanisms of action remain unclear. Thus, we aimed to explore the acaricidal mechanisms of GC16 through transcriptomic and proteomic analyses. The results were verified using transmission electron microscopy (TEM), immunofluorescence assay, and western blotting.

Results: Transcriptomic and proteomic analyses revealed 2717 differentially expressed genes (DEGs) and 374 differentially expressed proteins (DEPs) between the GC16-treated and control mites. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs and DEPs were enriched in the autophagy pathway. TEM showed that the number of autophagosomes and autolysosomes was higher in the GC16-treated mites than in the control mites. Immunofluorescence assay and western blot results consistently indicated that GC16 treatment significantly enhanced the relative expression of the autophagy protein LC3 in insect Sf9 cells. The intracellular calcium concentration in the GC16-treated Sf9 cells was 2.30 times higher than that in the control cells, suggesting that GC16 disrupted calcium homeostasis and potentially acted as a calcium-driven nerve agent.

Conclusions: Autophagy is involved in the toxicity of GC16 against T. pueraricola and may be activated by elevated Ca2+ levels. This study reveals the molecular insecticidal mechanisms of GC16 and provides rationale for the field application of GC16 to control pest mites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01. A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development. The case-only design is a powerful approach to detect interactions but should be used with caution. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. Analysis and identification of mitochondria-related genes associated with age-related hearing loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1