Robin Christ, Devon Siemes, Shuo Zhao, Lars Widera, Philippa Spangenberg, Julia Lill, Stephanie Thiebes, Jenny Bottek, Lars Borgards, Andreia G Pinho, Nuno A Silva, Susana Monteiro, Selina K Jorch, Matthias Gunzer, Bente Siebels, Hannah Voss, Hartmut Schlüter, Olga Shevchuk, Jianxu Chen, Daniel R Engel
{"title":"Inhibition of tumour necrosis factor alpha by Etanercept attenuates Shiga toxin-induced brain pathology.","authors":"Robin Christ, Devon Siemes, Shuo Zhao, Lars Widera, Philippa Spangenberg, Julia Lill, Stephanie Thiebes, Jenny Bottek, Lars Borgards, Andreia G Pinho, Nuno A Silva, Susana Monteiro, Selina K Jorch, Matthias Gunzer, Bente Siebels, Hannah Voss, Hartmut Schlüter, Olga Shevchuk, Jianxu Chen, Daniel R Engel","doi":"10.1186/s12974-025-03356-z","DOIUrl":null,"url":null,"abstract":"<p><p>Infection with enterohemorrhagic E. coli (EHEC) causes severe changes in the brain leading to angiopathy, encephalopathy and microglial activation. In this study, we investigated the role of tumour necrosis factor alpha (TNF-α) for microglial activation and brain pathology using a preclinical mouse model of EHEC infection. LC-MS/MS proteomics of mice injected with a combination of Shiga toxin (Stx) and lipopolysaccharide (LPS) revealed extensive alterations of the brain proteome, in particular enrichment of pathways involved in complement activation and coagulation cascades. Inhibition of TNF-α by the drug Etanercept strongly mitigated these changes, particularly within the complement pathway, suggesting TNF-α-dependent vasodilation and endothelial injury. Analysis of microglial populations using a novel human-in-the-loop deep learning algorithm for the segmentation of microscopic imaging data indicated specific morphological changes, which were reduced to healthy condition after inhibition of TNF-α. Moreover, the Stx/LPS-mediated angiopathy was significantly attenuated by inhibition of TNF-α. Overall, our findings elucidate the critical role of TNF-α in EHEC-induced brain pathology and highlight a potential therapeutic target for mitigating neuroinflammation, microglial activation and injury associated with EHEC infection.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"33"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03356-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infection with enterohemorrhagic E. coli (EHEC) causes severe changes in the brain leading to angiopathy, encephalopathy and microglial activation. In this study, we investigated the role of tumour necrosis factor alpha (TNF-α) for microglial activation and brain pathology using a preclinical mouse model of EHEC infection. LC-MS/MS proteomics of mice injected with a combination of Shiga toxin (Stx) and lipopolysaccharide (LPS) revealed extensive alterations of the brain proteome, in particular enrichment of pathways involved in complement activation and coagulation cascades. Inhibition of TNF-α by the drug Etanercept strongly mitigated these changes, particularly within the complement pathway, suggesting TNF-α-dependent vasodilation and endothelial injury. Analysis of microglial populations using a novel human-in-the-loop deep learning algorithm for the segmentation of microscopic imaging data indicated specific morphological changes, which were reduced to healthy condition after inhibition of TNF-α. Moreover, the Stx/LPS-mediated angiopathy was significantly attenuated by inhibition of TNF-α. Overall, our findings elucidate the critical role of TNF-α in EHEC-induced brain pathology and highlight a potential therapeutic target for mitigating neuroinflammation, microglial activation and injury associated with EHEC infection.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.