Image processing approaches for microtubule remodeling quantification at the immunological synapse.

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Methods in cell biology Pub Date : 2025-01-01 Epub Date: 2024-03-13 DOI:10.1016/bs.mcb.2024.02.036
Daniel Krentzel, Maria Isabella Gariboldi, Marie Juzans, Marta Mastrogiovanni, Florian Mueller, Céline Cuche, Vincenzo Di Bartolo, Andrés Alcover
{"title":"Image processing approaches for microtubule remodeling quantification at the immunological synapse.","authors":"Daniel Krentzel, Maria Isabella Gariboldi, Marie Juzans, Marta Mastrogiovanni, Florian Mueller, Céline Cuche, Vincenzo Di Bartolo, Andrés Alcover","doi":"10.1016/bs.mcb.2024.02.036","DOIUrl":null,"url":null,"abstract":"<p><p>Immunological synapses result from a T cell polarization process, requiring cytoskeleton remodeling. Actin and microtubules drive synapse architecture and the localization of intracellular organelles, including Golgi and endolysosomal compartments, ensuring the directional localization of synapse components. Microtubule remodeling includes the centrosome polarization and the formation of a radial microtubules network, extending from the centrosome to the synapse periphery. Concomitantly, a ring of filamentous actin forms at the synapse periphery. Microtubule and actin remodeling facilitate vesicle fusion at the synapse, enabling T cell effector functions. Analyzing structural subtleties of cytoskeleton remodeling at the immunological synapse is crucial to understand its role in T cell functions. It may also pinpoint pathological states related with cytoskeletal dysfunctions. Quantifying filamentous protein network properties is challenging due to their complex and heterogeneous architectures and the inherent difficulty of segmenting individual filaments. Here, we describe the development of an image processing approach aimed at quantifying microtubule organization at the immunological synapse without the need for filament segmentation. The method is based on the analysis of the spatial and directional organization of microtubules growing from the centrosome to the synapse periphery. It is applied to investigate the importance of Adenomatous polyposis coli (Apc), a polarity regulator and tumor suppressor, in immunological synapse structure and functions and its potential implication in anti-tumor immune responses. We provide an open-source napari plugin of the outlined methods for analyzing filamentous networks.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"193 ","pages":"39-67"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.02.036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Immunological synapses result from a T cell polarization process, requiring cytoskeleton remodeling. Actin and microtubules drive synapse architecture and the localization of intracellular organelles, including Golgi and endolysosomal compartments, ensuring the directional localization of synapse components. Microtubule remodeling includes the centrosome polarization and the formation of a radial microtubules network, extending from the centrosome to the synapse periphery. Concomitantly, a ring of filamentous actin forms at the synapse periphery. Microtubule and actin remodeling facilitate vesicle fusion at the synapse, enabling T cell effector functions. Analyzing structural subtleties of cytoskeleton remodeling at the immunological synapse is crucial to understand its role in T cell functions. It may also pinpoint pathological states related with cytoskeletal dysfunctions. Quantifying filamentous protein network properties is challenging due to their complex and heterogeneous architectures and the inherent difficulty of segmenting individual filaments. Here, we describe the development of an image processing approach aimed at quantifying microtubule organization at the immunological synapse without the need for filament segmentation. The method is based on the analysis of the spatial and directional organization of microtubules growing from the centrosome to the synapse periphery. It is applied to investigate the importance of Adenomatous polyposis coli (Apc), a polarity regulator and tumor suppressor, in immunological synapse structure and functions and its potential implication in anti-tumor immune responses. We provide an open-source napari plugin of the outlined methods for analyzing filamentous networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫突触是 T 细胞极化过程的结果,需要细胞骨架重塑。肌动蛋白和微管驱动突触结构和细胞内细胞器(包括高尔基体和内溶酶体)的定位,确保突触成分的定向定位。微管重塑包括中心体极化和径向微管网络的形成,从中心体延伸到突触外围。同时,在突触外围形成丝状肌动蛋白环。微管和肌动蛋白的重塑促进了突触处的囊泡融合,从而实现了 T 细胞效应器的功能。分析免疫突触细胞骨架重塑的微妙结构对于了解其在 T 细胞功能中的作用至关重要。它还能确定与细胞骨架功能障碍有关的病理状态。由于丝状蛋白网络结构复杂、异构,而且难以分割单个丝状蛋白,因此量化丝状蛋白网络特性具有挑战性。在此,我们介绍了一种图像处理方法的开发情况,该方法旨在量化免疫突触处的微管组织,而无需进行细丝分割。该方法基于对从中心体向突触外围生长的微管的空间和方向组织的分析。它被应用于研究腺瘤性息肉病大肠杆菌(Apc)(一种极性调节剂和肿瘤抑制因子)在免疫突触结构和功能中的重要性及其在抗肿瘤免疫反应中的潜在影响。我们提供了用于分析丝状网络的开源 napari 插件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
期刊最新文献
Deciphering neutrophil heterogeneity in human blood and tumors: Methods for isolating neutrophils and assessing their effect on T-cell proliferation. Evaluation of lymphocyte infiltration into cancer spheroids by immunofluorescent staining and 3D imaging. Ex vivo assessment of human neutrophil motility and migration. Expression, purification and characterization of phosphatidylserine-targeting antibodies for biochemical and therapeutic applications. Flow cytometry-based monitoring of myeloid-derived suppressor cells in the peripheral blood of patients with solid tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1