A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-02-07 DOI:10.1088/1361-6560/adb3ea
Tingting Gao, Libin Liang, Hui Ding, Chao Zhang, Xiu Wang, Wenhan Hu, Kai Zhang, Guangzhi Wang
{"title":"A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.","authors":"Tingting Gao, Libin Liang, Hui Ding, Chao Zhang, Xiu Wang, Wenhan Hu, Kai Zhang, Guangzhi Wang","doi":"10.1088/1361-6560/adb3ea","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>&#xD;Accurate prediction of thermal damage extent is essential for effective and precise thermal therapy, especially in brain laser interstitial thermal therapy (LITT). Immediate postoperative contrast-enhanced T1-weighted imaging (CE-T1WI) is the primary method for clinically assessing in vivo thermal damage after image-guided LITT. CE-T1WI reveals a hyperintense enhancing rim surrounding the target lesion, which serves as a key radiological marker for evaluating the thermal damage extent. Although widely used in clinical practice, traditional thermal damage models rely on empirical parameters from in vitro experiments, which can lead to inaccurate predictions of thermal damage in vivo. Additionally, these models predict only two tissue states (damaged or undamaged), failing to capture three tissue states observed on post-CE-T1WI images, highlighting the need for improved thermal damage prediction methods.</p><p><strong>Approach: </strong>This study proposes a novel Convolutional Long Short-Term Memory (ConvLSTM)-based model that utilizes intraoperative temperature distribution history data measured by magnetic resonance temperature imaging (MRTI) during LITT to predict the enhancing rim on post-CE-T1WI images. This method was implemented and evaluated on retrospective data from 56 patients underwent brain LITT.&#xD;Main results:&#xD;The proposed model effectively predicts the enhancing rim on postoperative images, achieving an average Dice Similarity Coefficient (DSC) of 0.82 (±0.063) on the test dataset. Furthermore, it generates real-time predicted thermal damage area variation trends that closely resemble those of the traditional thermal damage model, suggesting potential for real-time prediction of thermal damage extent.</p><p><strong>Significance: </strong>This method could provide a valuable tool for visualizing and assessing intraoperative thermal damage extent.&#xD.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb3ea","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Accurate prediction of thermal damage extent is essential for effective and precise thermal therapy, especially in brain laser interstitial thermal therapy (LITT). Immediate postoperative contrast-enhanced T1-weighted imaging (CE-T1WI) is the primary method for clinically assessing in vivo thermal damage after image-guided LITT. CE-T1WI reveals a hyperintense enhancing rim surrounding the target lesion, which serves as a key radiological marker for evaluating the thermal damage extent. Although widely used in clinical practice, traditional thermal damage models rely on empirical parameters from in vitro experiments, which can lead to inaccurate predictions of thermal damage in vivo. Additionally, these models predict only two tissue states (damaged or undamaged), failing to capture three tissue states observed on post-CE-T1WI images, highlighting the need for improved thermal damage prediction methods.

Approach: This study proposes a novel Convolutional Long Short-Term Memory (ConvLSTM)-based model that utilizes intraoperative temperature distribution history data measured by magnetic resonance temperature imaging (MRTI) during LITT to predict the enhancing rim on post-CE-T1WI images. This method was implemented and evaluated on retrospective data from 56 patients underwent brain LITT. Main results: The proposed model effectively predicts the enhancing rim on postoperative images, achieving an average Dice Similarity Coefficient (DSC) of 0.82 (±0.063) on the test dataset. Furthermore, it generates real-time predicted thermal damage area variation trends that closely resemble those of the traditional thermal damage model, suggesting potential for real-time prediction of thermal damage extent.

Significance: This method could provide a valuable tool for visualizing and assessing intraoperative thermal damage extent. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1