An EEG dataset for interictal epileptiform discharge with spatial distribution information.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2025-02-07 DOI:10.1038/s41597-025-04572-1
Nan Lin, Mengxuan Zheng, Lian Li, Peng Hu, Weifang Gao, Heyang Sun, Chang Xu, Gonglin Yuan, Zi Liang, Yisu Dong, Haibo He, Liying Cui, Qiang Lu
{"title":"An EEG dataset for interictal epileptiform discharge with spatial distribution information.","authors":"Nan Lin, Mengxuan Zheng, Lian Li, Peng Hu, Weifang Gao, Heyang Sun, Chang Xu, Gonglin Yuan, Zi Liang, Yisu Dong, Haibo He, Liying Cui, Qiang Lu","doi":"10.1038/s41597-025-04572-1","DOIUrl":null,"url":null,"abstract":"<p><p>Interictal epileptiform discharge (IED) and its spatial distribution are critical for the diagnosis, classification, and treatment of epilepsy. Existing publicly available datasets suffer from limitations such as insufficient data amount and lack of spatial distribution information. In this paper, we present a comprehensive EEG dataset containing annotated interictal epileptic data from 84 patients, each contributing 20 minutes of continuous raw EEG recordings, totaling 28 hours. IEDs and states of consciousness (wake/sleep) were meticulously annotated by at least three EEG experts. The IEDs were categorized into five types based on occurrence regions: generalized, frontal, temporal, occipital, and centro-parietal. The dataset includes 2,516 IED epochs and 22,933 non-IED epochs, each 4 seconds long. We developed and validated a VGG-based model for IED detection using this dataset, achieving improved performance with the inclusion of consciousness and/or spatial distribution information. Additionally, our dataset serves as a reliable test set for evaluating and comparing existing IED detection models.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"229"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04572-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Interictal epileptiform discharge (IED) and its spatial distribution are critical for the diagnosis, classification, and treatment of epilepsy. Existing publicly available datasets suffer from limitations such as insufficient data amount and lack of spatial distribution information. In this paper, we present a comprehensive EEG dataset containing annotated interictal epileptic data from 84 patients, each contributing 20 minutes of continuous raw EEG recordings, totaling 28 hours. IEDs and states of consciousness (wake/sleep) were meticulously annotated by at least three EEG experts. The IEDs were categorized into five types based on occurrence regions: generalized, frontal, temporal, occipital, and centro-parietal. The dataset includes 2,516 IED epochs and 22,933 non-IED epochs, each 4 seconds long. We developed and validated a VGG-based model for IED detection using this dataset, achieving improved performance with the inclusion of consciousness and/or spatial distribution information. Additionally, our dataset serves as a reliable test set for evaluating and comparing existing IED detection models.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有空间分布信息的癫痫样放电间歇期脑电图数据集。
癫痫样间期放电(IED)及其空间分布对癫痫的诊断、分类和治疗至关重要。现有的公开数据集存在数据量不足和缺乏空间分布信息等局限性。在本文中,我们提出了一个综合的脑电图数据集,其中包含来自84例患者的带注释的间歇癫痫数据,每个患者提供20分钟的连续原始脑电图记录,总计28小时。简易爆炸装置和意识状态(清醒/睡眠)由至少三位脑电图专家精心注释。根据发生区域将ied分为5种类型:广义、额叶、颞叶、枕叶和中央顶叶。该数据集包括2,516个IED时期和22,933个非IED时期,每4秒长。我们利用该数据集开发并验证了一个基于vgg的IED检测模型,通过包含意识和/或空间分布信息来提高性能。此外,我们的数据集可作为评估和比较现有IED检测模型的可靠测试集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
Multisession fNIRS-EEG data of Post-Stroke Motor Recovery. Recordings During Intact and Paretic Hand Movements. Near telomere-to-telomere diploid genome assembly of Acrossocheilus wenchowensis. Assembling a chromosome-level genome for the Microtus fortis using PacBio HiFi and Hi-C technologies. A full-length mtDNA dataset for studying genetic variations across generations and complex family structures. A dataset of tourist mobility networks across China derived from online travel blogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1