Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell and Bioscience Pub Date : 2025-02-07 DOI:10.1186/s13578-024-01342-1
Lu Zhu, Wenhao Yang, Jiaxin Luo, Danli Lu, Yanan Hu, Rui Zhang, Yan Li, Li Qiu, Zelian Chen, Lina Chen, Hanmin Liu
{"title":"Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids.","authors":"Lu Zhu, Wenhao Yang, Jiaxin Luo, Danli Lu, Yanan Hu, Rui Zhang, Yan Li, Li Qiu, Zelian Chen, Lina Chen, Hanmin Liu","doi":"10.1186/s13578-024-01342-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The nasal epithelium, as part of a continuous and integrated airway epithelium, provides a more accessible sample source than the bronchial epithelium. However, the similarities and differences in gene expression patterns and immune responses between these two sites have not been extensively studied.</p><p><strong>Results: </strong>Four lines of matched nasal and bronchial airway epithelial cells obtained from the four patients were embedded in Matrigel and cultured in thechemically defined medium to generate patient-derived nasal organoids (NO) and bronchial organoids (BO). Histologic examination of nasal organoid tissue revealed high similarity and a reduced ciliary beat frequency compared to bronchial organoid tissue. Whole exome sequencing revealed that over 99% of single nucleotides were shared between the NO and matched BO and there was a 95% overlap in their RNA transcriptomes. RNA sequencing analysis of differentially expressed genes indicated a significant reduction in the immune response in NO. RSV infection revealed more productive replication in NO, with a downregulated immune pathway identified by RNA sequencing analysis and upregulated levels of pro-inflammatory cytokines in culture supernatants in NO compared to BO.</p><p><strong>Conclusions: </strong>NO and BO serve as robust in vitro models, faithfully recapitulating the biological characteristics of upper respiratory epithelial cells. The different regions of respiratory epithelial cells exhibit distinct immune responses, underscoring their complementary roles in exploring airway immune mechanisms and disease pathophysiology.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"18"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-024-01342-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The nasal epithelium, as part of a continuous and integrated airway epithelium, provides a more accessible sample source than the bronchial epithelium. However, the similarities and differences in gene expression patterns and immune responses between these two sites have not been extensively studied.

Results: Four lines of matched nasal and bronchial airway epithelial cells obtained from the four patients were embedded in Matrigel and cultured in thechemically defined medium to generate patient-derived nasal organoids (NO) and bronchial organoids (BO). Histologic examination of nasal organoid tissue revealed high similarity and a reduced ciliary beat frequency compared to bronchial organoid tissue. Whole exome sequencing revealed that over 99% of single nucleotides were shared between the NO and matched BO and there was a 95% overlap in their RNA transcriptomes. RNA sequencing analysis of differentially expressed genes indicated a significant reduction in the immune response in NO. RSV infection revealed more productive replication in NO, with a downregulated immune pathway identified by RNA sequencing analysis and upregulated levels of pro-inflammatory cytokines in culture supernatants in NO compared to BO.

Conclusions: NO and BO serve as robust in vitro models, faithfully recapitulating the biological characteristics of upper respiratory epithelial cells. The different regions of respiratory epithelial cells exhibit distinct immune responses, underscoring their complementary roles in exploring airway immune mechanisms and disease pathophysiology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Bioscience
Cell and Bioscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.70
自引率
0.00%
发文量
187
审稿时长
>12 weeks
期刊介绍: Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.
期刊最新文献
Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids. Comprehensive landscape and oncogenic role of extrachromosomal circular DNA in malignant biliary strictures. TOPBP1 as a potential predictive biomarker for enhanced combinatorial efficacy of olaparib and AZD6738 in PDAC. Plectin, a novel regulator in migration, invasion and adhesion of ovarian cancer. Epsin3 promotes non-small cell lung cancer progression via modulating EGFR stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1