{"title":"Flash Communication: Ligand Centered Cooperative O–H Bond Splitting by a Mo(CO)5(phosphine) Complex","authors":"Sotirios Pavlidis, and , Josh Abbenseth*, ","doi":"10.1021/acs.organomet.4c0050710.1021/acs.organomet.4c00507","DOIUrl":null,"url":null,"abstract":"<p >The synthesis and reactivity of a molybdenum carbonyl complex ligated by geometrically constrained phosphorus trisamide are reported. Reaction with potassium <i>tert</i>-butoxide or methanol triggers ligand-centered substrate activation, leading to planarization of the phosphine donor ligand. P–O bond formation, decarbonylation, and insertion of the molybdenum center into a ligand P–N bond result in the formation of molybdenum tetracarbonyl complexes ligated by rigid N,P-chelate ligands.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"44 3","pages":"483–486 483–486"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.organomet.4c00507","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.organomet.4c00507","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis and reactivity of a molybdenum carbonyl complex ligated by geometrically constrained phosphorus trisamide are reported. Reaction with potassium tert-butoxide or methanol triggers ligand-centered substrate activation, leading to planarization of the phosphine donor ligand. P–O bond formation, decarbonylation, and insertion of the molybdenum center into a ligand P–N bond result in the formation of molybdenum tetracarbonyl complexes ligated by rigid N,P-chelate ligands.
期刊介绍:
Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.