Highly Stable Electrolyte Design Enables Improved Electrode/Electrolyte Interface Stability for Lithium-Metal Batteries

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-01-20 DOI:10.1021/acsaem.4c03016
Yilong Lin*, Yanshan Ji, Shuqing Gao, Sheng Huang, Jiawei Li, Wenyang Zhang, Qi Peng, Feng Liu, Yanwu Chen* and Yuezhong Meng*, 
{"title":"Highly Stable Electrolyte Design Enables Improved Electrode/Electrolyte Interface Stability for Lithium-Metal Batteries","authors":"Yilong Lin*,&nbsp;Yanshan Ji,&nbsp;Shuqing Gao,&nbsp;Sheng Huang,&nbsp;Jiawei Li,&nbsp;Wenyang Zhang,&nbsp;Qi Peng,&nbsp;Feng Liu,&nbsp;Yanwu Chen* and Yuezhong Meng*,&nbsp;","doi":"10.1021/acsaem.4c03016","DOIUrl":null,"url":null,"abstract":"<p >In lithium (Li)-metal batteries (LMBs), the functional electrolytes need to be compatible with both a high-voltage cathode and a highly reactive anode. However, the carbonate-based electrolytes in commercial lithium-ion batteries (LIBs) exhibit insufficient reductive stability due to severe side reactions and the formation of lithium dendrites on the Li anode. In this study, the use of LiPF<sub>6</sub> and lithium difluorobis(oxalato) phosphate (LiDFBOP) dual-salt electrolyte composed of ester and ether cosolvents (FEC/DME) enables the stabilization of the high-voltage LMBs through modulating the interfacial electrochemistry. Such an electrolyte design strategy is demonstrated to regulate the Li plating/stripping behavior by forming a robust anion-derived solid electrolyte interphase (SEI) film on the anode and to improve the cathode/electrolyte interfacial stability under high-voltage conditions. As a result, the as-developed electrolyte exhibits stable cycling over 800 h in Li∥Li symmetric cells and ultralong lifespans with capacity retention of 66% after 2000 cycles in Li∥LiFePO<sub>4</sub>. Targeted electrolyte engineering is presented as a promising approach for practical high-performance Li-metal batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 3","pages":"1803–1811 1803–1811"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In lithium (Li)-metal batteries (LMBs), the functional electrolytes need to be compatible with both a high-voltage cathode and a highly reactive anode. However, the carbonate-based electrolytes in commercial lithium-ion batteries (LIBs) exhibit insufficient reductive stability due to severe side reactions and the formation of lithium dendrites on the Li anode. In this study, the use of LiPF6 and lithium difluorobis(oxalato) phosphate (LiDFBOP) dual-salt electrolyte composed of ester and ether cosolvents (FEC/DME) enables the stabilization of the high-voltage LMBs through modulating the interfacial electrochemistry. Such an electrolyte design strategy is demonstrated to regulate the Li plating/stripping behavior by forming a robust anion-derived solid electrolyte interphase (SEI) film on the anode and to improve the cathode/electrolyte interfacial stability under high-voltage conditions. As a result, the as-developed electrolyte exhibits stable cycling over 800 h in Li∥Li symmetric cells and ultralong lifespans with capacity retention of 66% after 2000 cycles in Li∥LiFePO4. Targeted electrolyte engineering is presented as a promising approach for practical high-performance Li-metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高度稳定的电解液设计提高了锂金属电池电极/电解液界面的稳定性
在锂金属电池(lmb)中,功能电解质需要与高压阴极和高活性阳极兼容。然而,商用锂离子电池(lib)中的碳酸盐基电解质由于严重的副反应和在锂阳极上形成锂枝晶而表现出不够的还原稳定性。在本研究中,使用LiPF6和由酯和醚共溶剂(FEC/DME)组成的双盐电解质(LiDFBOP),通过调节界面电化学,实现了高压lmb的稳定。这种电解质设计策略通过在阳极上形成坚固的阴离子衍生固体电解质界面(SEI)膜来调节锂的电镀/剥离行为,并提高阴极/电解质界面在高压条件下的稳定性。结果表明,所制备的电解质在Li∥Li对称电池中表现出超过800 h的稳定循环,在Li∥LiFePO4中循环2000次后,其容量保持率达到66%,寿命超长。定向电解质工程是一种很有前途的实用高性能锂金属电池方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
LiPF6
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Non-Thermal Pulsed Plasma Synthesis of Carbon Nanomaterials from Hydrocarbons: Morphology and Energy Storage Hydrogen Evolution Reaction Using a Sulfanilamide/Citric Acid Derived N, S-Doped Carbon Dot Solidification Engineering for Thermoelectrics: Figure of Merit and Plasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1