{"title":"Conditions for Thermoelectric Power Factor Improvements upon Band Alignment in Complex Bandstructure Materials","authors":"Saff E. Awal Akhtar*, and , Neophytos Neophytou*, ","doi":"10.1021/acsaem.4c0274710.1021/acsaem.4c02747","DOIUrl":null,"url":null,"abstract":"<p >Band alignment (or band convergence) is a strategy suggested to provide improvements in the thermoelectric power factor (PF) of materials with complex bandstructures. The addition of more bands at the energy region that contributes to transport can provide more conducting paths and could improve the electrical conductivity and PF of a material. However, this can lead to increased intervalley scattering, which will tend to degrade the conductivity. Using the Boltzmann transport equation (BTE) and a multiband model, we theoretically investigate the conditions under which band alignment can improve the PF. We show that PF improvements are realized when intraband scattering between the aligned bands dominates over interband scattering, with larger improvements reached when a light band is brought into alignment. In the more realistic scenario of intra- and interband scattering coexistence, we show that in the light band alignment case, possibilities of PF improvement are present even down to the level where the intra- and interband scattering are of similar strength. For heavy band alignment, this tolerance is weaker, and weaker interband scattering is necessary to realize PF improvements. On the other hand, when interband scattering dominates, it is not possible to realize any PF improvements upon band alignment, irrespective of bringing a light or a heavy band into alignment. Overall, to realize PF improvements upon band alignment, the valleys that are brought into alignment need to be as electrically conducting as possible compared to the lower energy base valleys and interact as little as possible with those.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 3","pages":"1609–1619 1609–1619"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02747","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02747","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Band alignment (or band convergence) is a strategy suggested to provide improvements in the thermoelectric power factor (PF) of materials with complex bandstructures. The addition of more bands at the energy region that contributes to transport can provide more conducting paths and could improve the electrical conductivity and PF of a material. However, this can lead to increased intervalley scattering, which will tend to degrade the conductivity. Using the Boltzmann transport equation (BTE) and a multiband model, we theoretically investigate the conditions under which band alignment can improve the PF. We show that PF improvements are realized when intraband scattering between the aligned bands dominates over interband scattering, with larger improvements reached when a light band is brought into alignment. In the more realistic scenario of intra- and interband scattering coexistence, we show that in the light band alignment case, possibilities of PF improvement are present even down to the level where the intra- and interband scattering are of similar strength. For heavy band alignment, this tolerance is weaker, and weaker interband scattering is necessary to realize PF improvements. On the other hand, when interband scattering dominates, it is not possible to realize any PF improvements upon band alignment, irrespective of bringing a light or a heavy band into alignment. Overall, to realize PF improvements upon band alignment, the valleys that are brought into alignment need to be as electrically conducting as possible compared to the lower energy base valleys and interact as little as possible with those.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.