TMT-label comparative proteomics reveals the vernalization mechanism in Wucai (Brassica campestris L.)

IF 2.8 2区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of proteomics Pub Date : 2025-02-06 DOI:10.1016/j.jprot.2025.105398
Xueqing Liu , Na Liao , Xiaoyan Tang , Kang Wang , Wenjie Wang , Afrasyab Khan , Chenggang Wang , Lingyun Yuan , Guohu Chen
{"title":"TMT-label comparative proteomics reveals the vernalization mechanism in Wucai (Brassica campestris L.)","authors":"Xueqing Liu ,&nbsp;Na Liao ,&nbsp;Xiaoyan Tang ,&nbsp;Kang Wang ,&nbsp;Wenjie Wang ,&nbsp;Afrasyab Khan ,&nbsp;Chenggang Wang ,&nbsp;Lingyun Yuan ,&nbsp;Guohu Chen","doi":"10.1016/j.jprot.2025.105398","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate the molecular basis of vernalization in Wucai [<em>Brassica campestris</em> L. (Syn. <em>Brassica rapa</em> L.) ssp. <em>chinensis</em> var. <em>rosularis</em> Tsen], we performed differential proteomic analysis using a tandem mass tags (TMT)-based approach. Proteins from shoot apices subjected to 0, 15, and 30 days of vernalization (V0, V15, and V30) were analyzed to identify differentially abundant proteins (DAPs). A total of 8066 proteins were obtained, and 507 shared DAPs were involved in both initiation and progression of vernalization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations revealed functional enrichment in cellular processes, metabolic pathways, and translation-related activities, including photosynthesis, glucosinolate biosynthesis, and flavonoid biosynthesis. Proteomic data showed reduced abundance of photosynthesis-related proteins and upregulation of flavonoid biosynthesis during vernalization. Transcriptional validation of 24 proteins across metabolic and regulatory pathways corroborated proteomic findings, with notable peaks in genes associated with flavonoid biosynthesis at 15 days of vernalization, such as <em>VESR1</em>,<em>CH13</em>, <em>CHS1</em>, <em>FHT</em>, and <em>FLS1</em>. The functions of these genes in vernalization will be further analyzed.</div></div><div><h3>Significance</h3><div>Wucai is prone to premature bolting and flowering under cold conditions, as vernalization plays a key role in controlling flowering time in Chinese cabbage crops. However, the proteomic basis of vernalization remains poorly understood. In this study, TMT-based proteomic analysis identified DAPs associated with vernalization. Pathway enrichment analysis highlighted key DAPs and their roles in significantly enriched pathways relevant to vernalization. Notably, genes in the flavonoid biosynthesis pathway genes, including <em>VESR1</em>, <em>CH13, CHS1</em>, <em>FHT</em>, and <em>FLS1</em>, respond to vernalization. These findings offer novel insights into the molecular mechanisms underlying flowering time regulation in Wucai.</div></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":"314 ","pages":"Article 105398"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391925000259","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the molecular basis of vernalization in Wucai [Brassica campestris L. (Syn. Brassica rapa L.) ssp. chinensis var. rosularis Tsen], we performed differential proteomic analysis using a tandem mass tags (TMT)-based approach. Proteins from shoot apices subjected to 0, 15, and 30 days of vernalization (V0, V15, and V30) were analyzed to identify differentially abundant proteins (DAPs). A total of 8066 proteins were obtained, and 507 shared DAPs were involved in both initiation and progression of vernalization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations revealed functional enrichment in cellular processes, metabolic pathways, and translation-related activities, including photosynthesis, glucosinolate biosynthesis, and flavonoid biosynthesis. Proteomic data showed reduced abundance of photosynthesis-related proteins and upregulation of flavonoid biosynthesis during vernalization. Transcriptional validation of 24 proteins across metabolic and regulatory pathways corroborated proteomic findings, with notable peaks in genes associated with flavonoid biosynthesis at 15 days of vernalization, such as VESR1,CH13, CHS1, FHT, and FLS1. The functions of these genes in vernalization will be further analyzed.

Significance

Wucai is prone to premature bolting and flowering under cold conditions, as vernalization plays a key role in controlling flowering time in Chinese cabbage crops. However, the proteomic basis of vernalization remains poorly understood. In this study, TMT-based proteomic analysis identified DAPs associated with vernalization. Pathway enrichment analysis highlighted key DAPs and their roles in significantly enriched pathways relevant to vernalization. Notably, genes in the flavonoid biosynthesis pathway genes, including VESR1, CH13, CHS1, FHT, and FLS1, respond to vernalization. These findings offer novel insights into the molecular mechanisms underlying flowering time regulation in Wucai.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of proteomics
Journal of proteomics 生物-生化研究方法
CiteScore
7.10
自引率
3.00%
发文量
227
审稿时长
73 days
期刊介绍: Journal of Proteomics is aimed at protein scientists and analytical chemists in the field of proteomics, biomarker discovery, protein analytics, plant proteomics, microbial and animal proteomics, human studies, tissue imaging by mass spectrometry, non-conventional and non-model organism proteomics, and protein bioinformatics. The journal welcomes papers in new and upcoming areas such as metabolomics, genomics, systems biology, toxicogenomics, pharmacoproteomics. Journal of Proteomics unifies both fundamental scientists and clinicians, and includes translational research. Suggestions for reviews, webinars and thematic issues are welcome.
期刊最新文献
TMT-label comparative proteomics reveals the vernalization mechanism in Wucai (Brassica campestris L.) Quantitative phosphoproteomic reveals that the induction of competence modulates protein phosphorylation in Streptococcus pneumonaie. P.1 and P.2 SARS-CoV-2 Brazilian variants activate the unfolded protein response with a time and pathway specificity. Antibody-free LC-HRMS/MS method for simultaneous quantification of NGAL, CRP and SAA in serum from sepsis patients Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1