Shuyao Tan , Alain Rapaport , Peter A. Vanrolleghem , Denis Dochain , Elodie Passeport , Joshua A. Taylor
{"title":"Predictive control of flow rates and concentrations in sewage transport and treatment systems","authors":"Shuyao Tan , Alain Rapaport , Peter A. Vanrolleghem , Denis Dochain , Elodie Passeport , Joshua A. Taylor","doi":"10.1016/j.jprocont.2025.103386","DOIUrl":null,"url":null,"abstract":"<div><div>We design a predictive flow rate and concentration controller for wastewater transport and treatment networks. It manages flow rates to avoid overflows during times of high flow, and maximizes treatment efficiency when the system is within capacity limits. The underlying optimization is nonlinear due to the microbial growth kinetics and bilinear mass flows. Using a second-order cone relaxation of the microbial growth constraints and the alternating direction method of multipliers, we break down the problem into second-order cone and quadratic programs. This allows us to solve the problem at large scales in real-time. In a case study based on the wastewater transport and treatment system in the City of Paris, our controller outperforms the conventional flowrate-based controller by removing 13.7% more pollutant mass while treating the same amount of wastewater.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"147 ","pages":"Article 103386"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000149","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We design a predictive flow rate and concentration controller for wastewater transport and treatment networks. It manages flow rates to avoid overflows during times of high flow, and maximizes treatment efficiency when the system is within capacity limits. The underlying optimization is nonlinear due to the microbial growth kinetics and bilinear mass flows. Using a second-order cone relaxation of the microbial growth constraints and the alternating direction method of multipliers, we break down the problem into second-order cone and quadratic programs. This allows us to solve the problem at large scales in real-time. In a case study based on the wastewater transport and treatment system in the City of Paris, our controller outperforms the conventional flowrate-based controller by removing 13.7% more pollutant mass while treating the same amount of wastewater.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.