Determination of membrane PD-L1 by SECM technique based on aptamer identification

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Electroanalytical Chemistry Pub Date : 2025-02-07 DOI:10.1016/j.jelechem.2025.118999
Yuying Du, Ziqi Wang, Jiening Wu, Liping Lu
{"title":"Determination of membrane PD-L1 by SECM technique based on aptamer identification","authors":"Yuying Du,&nbsp;Ziqi Wang,&nbsp;Jiening Wu,&nbsp;Liping Lu","doi":"10.1016/j.jelechem.2025.118999","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane proteins play crucial roles in cellular activities and are the major actors of bio-membrane functions. Programmed death ligand receptor 1 (PD-L1) is a type of transmembrane protein that is overexpressed on certain tumor cells, leading to the immune escape of cancer cells. Here, a detection method was developed using scanning electrochemical microscopy (SECM) through aptamer-specific recognition and enzyme-catalyzed reaction, which converts the PD-L1 expression into an electrical signal. The aptamer (MJ5C) modified alkaline phosphatase (ALP) can specifically capture PD-L1, and ALP catalyzes the reduction of 4-aminophenyl phosphate (PAPP) to p-aminophenol (PAP), the current response of PAP at SECM tip is positively correlated with the expression of PD-L1 on NCI-H1975 cell. The results showed that this method could real-time detect the expression of PD-L1 on a single cell stimulated by drugs and dibenzothiophene (DBT). Overall, this method provides a new feasible method for the real-time nondestructive detection of single-cell membrane protein expression and a new avenue for studying the effect of pollutants on membrane protein.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"980 ","pages":"Article 118999"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725000724","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane proteins play crucial roles in cellular activities and are the major actors of bio-membrane functions. Programmed death ligand receptor 1 (PD-L1) is a type of transmembrane protein that is overexpressed on certain tumor cells, leading to the immune escape of cancer cells. Here, a detection method was developed using scanning electrochemical microscopy (SECM) through aptamer-specific recognition and enzyme-catalyzed reaction, which converts the PD-L1 expression into an electrical signal. The aptamer (MJ5C) modified alkaline phosphatase (ALP) can specifically capture PD-L1, and ALP catalyzes the reduction of 4-aminophenyl phosphate (PAPP) to p-aminophenol (PAP), the current response of PAP at SECM tip is positively correlated with the expression of PD-L1 on NCI-H1975 cell. The results showed that this method could real-time detect the expression of PD-L1 on a single cell stimulated by drugs and dibenzothiophene (DBT). Overall, this method provides a new feasible method for the real-time nondestructive detection of single-cell membrane protein expression and a new avenue for studying the effect of pollutants on membrane protein.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于适体鉴定的膜PD-L1的SECM技术测定
膜蛋白在细胞活动中起着至关重要的作用,是生物膜功能的主要参与者。程序性死亡配体受体1 (Programmed death ligand receptor 1, PD-L1)是一种跨膜蛋白,在某些肿瘤细胞上过表达,导致癌细胞免疫逃逸。本研究利用扫描电化学显微镜(SECM)通过适配体特异性识别和酶催化反应,将PD-L1表达转化为电信号,建立了一种检测方法。适配体(MJ5C)修饰的碱性磷酸酶(ALP)可以特异性捕获PD-L1, ALP催化4-氨基苯基磷酸(PAPP)还原为对氨基酚(PAP), PAP在SECM顶端的当前反应与NCI-H1975细胞上PD-L1的表达呈正相关。结果表明,该方法可以实时检测药物和二苯并噻吩(DBT)刺激下单细胞上PD-L1的表达。总之,该方法为实时无损检测单细胞膜蛋白表达提供了一种新的可行方法,也为研究污染物对膜蛋白的影响提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
期刊最新文献
Electrode kinetics of the ferrocyanide-ferricyanide couple Novel design of SiOx/graphite/nitrogen-doped pitch carbon composite for superior lithium storage Study on the OER performance of graphite-supported NiFe2O4 derivative catalysts prepared by in-situ carbothermal reduction method Hydrothermal integration of carbon nanotube (CNT) into NiCo oxysulfide electrocatalysts for improved rechargeable zinc–air battery performance Eu-Mo dual-doping in dual-phase systems: Toward enhanced electrochromic performance of WO3 films for smart windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1