Effective near-duplicate image detection using perceptual hashing and deep learning

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2025-02-09 DOI:10.1016/j.ipm.2025.104086
Yash Jakhar, Malaya Dutta Borah
{"title":"Effective near-duplicate image detection using perceptual hashing and deep learning","authors":"Yash Jakhar,&nbsp;Malaya Dutta Borah","doi":"10.1016/j.ipm.2025.104086","DOIUrl":null,"url":null,"abstract":"<div><div>Computer vision has always been concerned with near-duplicate image detection. Previous approaches for detecting near duplicates highlighted the necessity to adequately explore the aspect of image transformations for effectively handling complex images. We proposed a method of finding near duplicate images using the integration of three different techniques: perceptual hashing, Siamese network, and Vision Transformer. Perceptual hashing gives us a quick way to filter out similar-looking pictures, while the Siamese network architecture paired with the Vision transformer helps us identify more complex near duplicate instances. The integrated approach learns a metric space from data, which reflects both visual similarity and perceptual closeness among items in the dataset. The results demonstrate the effectiveness and robustness of our proposed method, achieving an AUROC of 0.99 and a precision of 0.987 on the California-ND dataset, and an AUROC of 0.92 with a precision of 0.884 on the INRIA Holidays dataset, significantly outperforming traditional methods by over 10% in both metrics. This represents a significant step forward in near-duplicate image detection research.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104086"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000287","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Computer vision has always been concerned with near-duplicate image detection. Previous approaches for detecting near duplicates highlighted the necessity to adequately explore the aspect of image transformations for effectively handling complex images. We proposed a method of finding near duplicate images using the integration of three different techniques: perceptual hashing, Siamese network, and Vision Transformer. Perceptual hashing gives us a quick way to filter out similar-looking pictures, while the Siamese network architecture paired with the Vision transformer helps us identify more complex near duplicate instances. The integrated approach learns a metric space from data, which reflects both visual similarity and perceptual closeness among items in the dataset. The results demonstrate the effectiveness and robustness of our proposed method, achieving an AUROC of 0.99 and a precision of 0.987 on the California-ND dataset, and an AUROC of 0.92 with a precision of 0.884 on the INRIA Holidays dataset, significantly outperforming traditional methods by over 10% in both metrics. This represents a significant step forward in near-duplicate image detection research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
Exploring the subject heterogeneity of scientific research projects funding-example of the Chinese natural science foundation Information bottleneck-driven prompt on graphs for unifying downstream few-shot classification tasks Competition or coexistence: Diffusion network differences between entertainment events and public events on social media LLM-infused bi-level semantic enhancement for corporate credit risk prediction Concept cognition over knowledge graphs: A perspective from mining multi-granularity attribute characteristics of concepts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1