The regenerative wound healing effects and molecular mechanism of Isaria cicadae Miquel rice fermentation extract

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2025-02-10 DOI:10.1007/s00253-025-13412-6
Qin Wang, Wenwen Hao, Chao Guo, Hui Cao, Beiqi Wang, Xingyang Li, Ruilian Yu, Li Xu, Jing Li
{"title":"The regenerative wound healing effects and molecular mechanism of Isaria cicadae Miquel rice fermentation extract","authors":"Qin Wang,&nbsp;Wenwen Hao,&nbsp;Chao Guo,&nbsp;Hui Cao,&nbsp;Beiqi Wang,&nbsp;Xingyang Li,&nbsp;Ruilian Yu,&nbsp;Li Xu,&nbsp;Jing Li","doi":"10.1007/s00253-025-13412-6","DOIUrl":null,"url":null,"abstract":"<p>Human skin wounds primarily heal through reparative wound healing without pilosebaceous units or other appendages, rather than regenerative wound healing. Hair follicle (HF) regeneration is a significant challenge for skin wound healing. The effects and underlying mechanisms of <i>Isaria cicadae</i> Miquel rice fermentation extract (IMFRE) remain unclear, although it has anti-inflammatory, antioxidant, and reparative effects on oxidative damage in keratinocytes. We assessed the regenerative wound healing ability of IMFRE and its related molecular mechanisms through experimental validation and network pharmacology analysis. Our findings suggest that IMFRE could be an important potential solution for regenerative wound healing of skin hair follicle by utilizing the Hippo pathway regulatory mechanism.</p><p><i>• IMFRE was found to significantly enhance the wound healing rate of mouse skin.</i></p><p><i>• CK15 and CD34 were significantly increased by high-dose IMFRE intervention.</i></p><p><i>• IMFRE could inhibit EGFR, GPCR, and Integrin expression.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13412-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13412-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human skin wounds primarily heal through reparative wound healing without pilosebaceous units or other appendages, rather than regenerative wound healing. Hair follicle (HF) regeneration is a significant challenge for skin wound healing. The effects and underlying mechanisms of Isaria cicadae Miquel rice fermentation extract (IMFRE) remain unclear, although it has anti-inflammatory, antioxidant, and reparative effects on oxidative damage in keratinocytes. We assessed the regenerative wound healing ability of IMFRE and its related molecular mechanisms through experimental validation and network pharmacology analysis. Our findings suggest that IMFRE could be an important potential solution for regenerative wound healing of skin hair follicle by utilizing the Hippo pathway regulatory mechanism.

• IMFRE was found to significantly enhance the wound healing rate of mouse skin.

• CK15 and CD34 were significantly increased by high-dose IMFRE intervention.

• IMFRE could inhibit EGFR, GPCR, and Integrin expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Enhancement of immune responses to classical swine fever virus E2 in mice by fusion or mixture with the porcine IL-28B Advancing cellulose utilization and engineering consolidated bioprocessing yeasts: current state and perspectives Study on the framework of ATP energy cycle system in Escherichia coli Cultivation of filamentous fungi in airlift bioreactors: advantages and disadvantages The regenerative wound healing effects and molecular mechanism of Isaria cicadae Miquel rice fermentation extract
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1