Water Footprint Assessment to Map and Quantify Water Consumption and Water Pollution Incurred: A Case Study of Malaysia

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2025-02-10 DOI:10.1007/s11270-025-07786-6
Nur Syafiqah Binti Hashim, Marlinda Binti Abdul Malek, Sarmad Dashti Latif, Majed Alsubih, Ahmed ElShafie, Ali Najah Ahmed
{"title":"Water Footprint Assessment to Map and Quantify Water Consumption and Water Pollution Incurred: A Case Study of Malaysia","authors":"Nur Syafiqah Binti Hashim,&nbsp;Marlinda Binti Abdul Malek,&nbsp;Sarmad Dashti Latif,&nbsp;Majed Alsubih,&nbsp;Ahmed ElShafie,&nbsp;Ali Najah Ahmed","doi":"10.1007/s11270-025-07786-6","DOIUrl":null,"url":null,"abstract":"<div><p>In line with the objective of Sustainable Development Goals (SDGs) 3, 6, 11, 12, and 15, a water footprint assessment (WFA) was conducted at the International Islamic University Malaysia (IIUM) Campus in Malaysia. This study illustrates the concept of water footprint (WF) to map and quantify water consumption and water pollution incurred inside IIUM. Based on calculations conducted on blue water footprint (WFblue), approximately 279,810 m<sup>3</sup>/month was consumed in June 2022. Zone 5 was found to consume more clean water at 212,440 m<sup>3</sup>/month compared to other zones in the study area, due to its size and population. In terms of grey water footprint (WFgrey) for the water body calculated, it was found that sampling point P4 has 6,475,770 m<sup>3</sup>/month of WFgrey resulting from the accumulation WFgrey at three sampling points which are inlets to sampling point P4. This value is found to be higher than WFgrey produced by the community of IIUM at 1,947,495 m<sup>3</sup>/month. For WFgrey domestic, it showed that Zone 5 produced the highest WFgrey at 88,476,290 m<sup>3</sup>/month which also included the value of Total Suspended Solid (TSS), Biochemical Oxygen Demand (BOD<sub>5</sub>), and Ammonia Nitrate (NH<sub>3</sub><sup>−</sup>N) at the Sewerage Treatment Plants (STPs). Results from this study confirmed that the amount of discharged polluted water is higher than the consumption of clean water. The water scarcity of blue water (WSblue) calculation showed that the value at each zone did not exceed 1.0 and can be categorized as sustainable. Nevertheless, the findings from the water pollution level (WPL) analysis showed all zones did not exceed 1.0 except Zone 5, whose WPL value nearly reached 1.0. Therefore, it can be concluded that all the Zones located in IIUM are still considered sustainable. The management of IIUM is recommended to take mitigation actions to ensure continuous sustainability of the campus, especially at Zone 5.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07786-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In line with the objective of Sustainable Development Goals (SDGs) 3, 6, 11, 12, and 15, a water footprint assessment (WFA) was conducted at the International Islamic University Malaysia (IIUM) Campus in Malaysia. This study illustrates the concept of water footprint (WF) to map and quantify water consumption and water pollution incurred inside IIUM. Based on calculations conducted on blue water footprint (WFblue), approximately 279,810 m3/month was consumed in June 2022. Zone 5 was found to consume more clean water at 212,440 m3/month compared to other zones in the study area, due to its size and population. In terms of grey water footprint (WFgrey) for the water body calculated, it was found that sampling point P4 has 6,475,770 m3/month of WFgrey resulting from the accumulation WFgrey at three sampling points which are inlets to sampling point P4. This value is found to be higher than WFgrey produced by the community of IIUM at 1,947,495 m3/month. For WFgrey domestic, it showed that Zone 5 produced the highest WFgrey at 88,476,290 m3/month which also included the value of Total Suspended Solid (TSS), Biochemical Oxygen Demand (BOD5), and Ammonia Nitrate (NH3N) at the Sewerage Treatment Plants (STPs). Results from this study confirmed that the amount of discharged polluted water is higher than the consumption of clean water. The water scarcity of blue water (WSblue) calculation showed that the value at each zone did not exceed 1.0 and can be categorized as sustainable. Nevertheless, the findings from the water pollution level (WPL) analysis showed all zones did not exceed 1.0 except Zone 5, whose WPL value nearly reached 1.0. Therefore, it can be concluded that all the Zones located in IIUM are still considered sustainable. The management of IIUM is recommended to take mitigation actions to ensure continuous sustainability of the campus, especially at Zone 5.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Water Footprint Assessment to Map and Quantify Water Consumption and Water Pollution Incurred: A Case Study of Malaysia Precursor Controlled Copper-Doped Carbon Quantum Dots Efficient for the Degradation of Rhodamine-B Covalent Triazine Framework Polymer as a Photocatalyst for the Degradation of Ofloxacin under Visible Light Irradiation Spectroflurometric Determination of Adapalene Using Potassium Permanganate as a Reagent in Sea Water, and Wastewater Analysis and Evaluation of Potential Adsorbent for CO2 Capture in a CI Engine Exhaust: An Experimental Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1