Smart IoT-based snake trapping device for automated snake capture and identification

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Monitoring and Assessment Pub Date : 2025-02-10 DOI:10.1007/s10661-025-13722-2
Neelu Jyothi Ahuja, Nitin Pasi, Huma Naz, Rahul Chamola
{"title":"Smart IoT-based snake trapping device for automated snake capture and identification","authors":"Neelu Jyothi Ahuja,&nbsp;Nitin Pasi,&nbsp;Huma Naz,&nbsp;Rahul Chamola","doi":"10.1007/s10661-025-13722-2","DOIUrl":null,"url":null,"abstract":"<div><p>The threat of snakebites to public health, particularly in tropical and subtropical regions, requires effective mitigation strategies to avoid human-snake interactions. With the development of an IoT-based smart snake-trapping device, an innovative non-invasive solution for preventing snakebites is presented, autonomously capturing and identifying snakes. Using artificial intelligence (AI) and Internet of Things (IoT) technologies, the entire system is designed to improve the safety and efficiency of snake capture, both in rural and urban areas. A camera and sensors are installed in the device to detect heat and vibration signatures, mimicking the natural prey of snakes using tungsten wire and vibration motors to attract them into the trap. A real-time classification algorithm based on deep learning determines whether a snake is venomous or non-venomous as soon as the device detects it. This algorithm utilizes a transfer learning approach using a convolutional neural network (CNN) and has been trained using snake images, achieving an accuracy of 91.3%. As a result of this identification process, appropriate actions are taken, such as alerting authorities or releasing non-venomous snakes into the environment in a safe manner. Through the integration of IoT technology, users can receive real-time notifications and data regarding the trap via a smartphone application. The system’s connectivity allows for timely intervention in case of venomous species, reducing snakebite risks. Additionally, the system provides information regarding snake movement patterns and species distribution, contributing to the study of broader ecological issues. An automated and efficient method of managing snakes could be implemented in snakebite-prone regions with the smart trapping device.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13722-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The threat of snakebites to public health, particularly in tropical and subtropical regions, requires effective mitigation strategies to avoid human-snake interactions. With the development of an IoT-based smart snake-trapping device, an innovative non-invasive solution for preventing snakebites is presented, autonomously capturing and identifying snakes. Using artificial intelligence (AI) and Internet of Things (IoT) technologies, the entire system is designed to improve the safety and efficiency of snake capture, both in rural and urban areas. A camera and sensors are installed in the device to detect heat and vibration signatures, mimicking the natural prey of snakes using tungsten wire and vibration motors to attract them into the trap. A real-time classification algorithm based on deep learning determines whether a snake is venomous or non-venomous as soon as the device detects it. This algorithm utilizes a transfer learning approach using a convolutional neural network (CNN) and has been trained using snake images, achieving an accuracy of 91.3%. As a result of this identification process, appropriate actions are taken, such as alerting authorities or releasing non-venomous snakes into the environment in a safe manner. Through the integration of IoT technology, users can receive real-time notifications and data regarding the trap via a smartphone application. The system’s connectivity allows for timely intervention in case of venomous species, reducing snakebite risks. Additionally, the system provides information regarding snake movement patterns and species distribution, contributing to the study of broader ecological issues. An automated and efficient method of managing snakes could be implemented in snakebite-prone regions with the smart trapping device.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
期刊最新文献
Beebread pollen composition is affected by seasonality and landscape structure Advancing food security through drone-based hyperspectral imaging: applications in precision agriculture and post-harvest management Assessment of polycyclic aromatic hydrocarbons (PAHs) and heavy metal contamination in Shitalakshya River water: ecological and health risk implications Assessing forest fire likelihood and identification of fire risk zones using maximum entropy-based model in Khyber Pakhtunkhwa, Pakistan Dietary mercury exposure through fish consumption in a coastal community in northwestern Mexico: a comparison of toxicokinetic models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1