Gao Meng, Tang Zhonghai, Gao Guangyun, Li Jianduan
{"title":"Response of Track Vibration under the Coupling Effect of Wheel Flat Scar and Track Irregularities","authors":"Gao Meng, Tang Zhonghai, Gao Guangyun, Li Jianduan","doi":"10.1134/S0025654424605196","DOIUrl":null,"url":null,"abstract":"<p>In order to accurately express the train load, the quasi-static train moving load expression is derived considering the wheel flat scars and track irregularities. By performing Fourier transform on time and wavenumber transform along the track direction, the three-dimensional space problem can be simplified into a two-dimensional plane problem. Combining boundary conditions and Galerkin method, a 2.5-dimensional train track quasi saturated foundation finite element dynamic analysis model equation is obtained. The track structure is regarded as an Euler beam on an unsaturated foundation, and the modified train load is obtained in the time space domain through fast Fourier inverse transform. The influence of train speed, load conditions, and foundation saturation on track vibration is explored. Calculations show that when the wheel flat scars and track irregularities are coupled, the amplitude of track vibration is more than twice that of the ideal moving load, and much greater than the individual effect of the wheel flat scars or track irregularities. When the train speed is 120 km/h, the amplitude of track vibration caused by wheel flat scars is greater than that of track irregularities, while the opposite is true when the train speed approaches the shear wave velocity. The saturation of the foundation decreases from 100 to 95%, and the vertical displacement of the track increases significantly, while the vertical acceleration increases slightly, and the acceleration power spectrum will slightly decrease. During low and high-speed operation, the acceleration power spectrum experiences near missing phenomena at 20 and 50 Hz, respectively. The peak of acceleration power spectrum appears at 13.5 Hz during low-speed operation (for all four types of loads), and at 40 Hz and 30 Hz during high-speed operation.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 5","pages":"3148 - 3162"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424605196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to accurately express the train load, the quasi-static train moving load expression is derived considering the wheel flat scars and track irregularities. By performing Fourier transform on time and wavenumber transform along the track direction, the three-dimensional space problem can be simplified into a two-dimensional plane problem. Combining boundary conditions and Galerkin method, a 2.5-dimensional train track quasi saturated foundation finite element dynamic analysis model equation is obtained. The track structure is regarded as an Euler beam on an unsaturated foundation, and the modified train load is obtained in the time space domain through fast Fourier inverse transform. The influence of train speed, load conditions, and foundation saturation on track vibration is explored. Calculations show that when the wheel flat scars and track irregularities are coupled, the amplitude of track vibration is more than twice that of the ideal moving load, and much greater than the individual effect of the wheel flat scars or track irregularities. When the train speed is 120 km/h, the amplitude of track vibration caused by wheel flat scars is greater than that of track irregularities, while the opposite is true when the train speed approaches the shear wave velocity. The saturation of the foundation decreases from 100 to 95%, and the vertical displacement of the track increases significantly, while the vertical acceleration increases slightly, and the acceleration power spectrum will slightly decrease. During low and high-speed operation, the acceleration power spectrum experiences near missing phenomena at 20 and 50 Hz, respectively. The peak of acceleration power spectrum appears at 13.5 Hz during low-speed operation (for all four types of loads), and at 40 Hz and 30 Hz during high-speed operation.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.