{"title":"Description of the Phenomenon of Decreasing Plasticity with Increasing Yield Strength of Polycrystal","authors":"V. Yu. Marina","doi":"10.1134/S0025654424603537","DOIUrl":null,"url":null,"abstract":"<p>Using a three-level constitutive model, the influence of the crystal anisotropy factor, the hardening coefficient, the microscopic elastic limit and the distribution density function of the limiting elastic deformations of subelements on the shape of the deformation diagrams and the fracture conditions of a polycrystal is studied. Based on the theory of maximum normal stresses at the local level, a failure criterion was established at the macroscopic level, which includes all the parameters of the problem. The influence of the type of stress state and the geometric shape of the loading diagram on the magnitude of irreversible deformation preceding the initial process of destruction is investigated. From the established strength criterion follows the effect of a decrease in the plasticity of the material with increasing yield strength. The question of the critical value of the weight of destroyed subelements is discussed, at which a macrocrack forms, leading to the complete destruction of the body element.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 5","pages":"2746 - 2762"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603537","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using a three-level constitutive model, the influence of the crystal anisotropy factor, the hardening coefficient, the microscopic elastic limit and the distribution density function of the limiting elastic deformations of subelements on the shape of the deformation diagrams and the fracture conditions of a polycrystal is studied. Based on the theory of maximum normal stresses at the local level, a failure criterion was established at the macroscopic level, which includes all the parameters of the problem. The influence of the type of stress state and the geometric shape of the loading diagram on the magnitude of irreversible deformation preceding the initial process of destruction is investigated. From the established strength criterion follows the effect of a decrease in the plasticity of the material with increasing yield strength. The question of the critical value of the weight of destroyed subelements is discussed, at which a macrocrack forms, leading to the complete destruction of the body element.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.