NAT10 promotes ovarian cancer cell migration, invasion, and stemness via N4-acetylcytidine modification of CAPRIN1.

IF 2.4 3区 医学 Q2 OBSTETRICS & GYNECOLOGY BMC Women's Health Pub Date : 2025-02-08 DOI:10.1186/s12905-025-03567-9
Yang Song, Min Cheng
{"title":"NAT10 promotes ovarian cancer cell migration, invasion, and stemness via N4-acetylcytidine modification of CAPRIN1.","authors":"Yang Song, Min Cheng","doi":"10.1186/s12905-025-03567-9","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer (OC) is the most lethal gynecological tumor. N4-acetylcytidine (ac4C) modification, catalyzed by the acetyltransferase NAT10, is involved in the occurrence and development of cancers. This study aimed to investigate the role of NAT10 in OC and the underlying molecular mechanisms. The expression of NAT10 and CAPRIN1 in OC cells lines were measured using quantitative real-time polymerase chain reaction and immunoblotting. Biological behaviors of OC cells were evaluated using EdU, Transwell, sphere formation, and immunoblotting assays. The molecular mechanism of NAT10 function was analyzed using bioinformatics, ac4C- RNA immunoprecipitation, and actinomycin D treatment assay. The effect of NAT10 on OC progression in vivo was evaluated using xenograft tumor model. The results indicated that NAT10 and CAPRIN1 were highly expressed in OC cells. NAT10 knockdown suppressed OC cell proliferation, migration, invasiveness, stemness, and epithelial-mesenchymal transition in vitro, and impeded tumor growth in vivo. Additionally, CAPRIN1 expression was found to be positively related to NAT10 expression in OC. Silencing of NAT10 inhibited ac4C levels of CAPRIN1 and reduced its RNA stability. Moreover, overexpression of CAPRIN1 reversed the suppression of migration, invasion, and stemness caused by NAT10 knockdown, while knockdown of CAPRIN1 alone inhibited these malignant behaviors of OC cells. In conclusion, NAT10 promotes OC progression by promoting cellular migration, invasion, and stemness via upregulating CAPRIN1 expression. Mechanistically, NAT10 stabilizes CAPRIN1 by promoting its ac4C modification. These findings suggest that NAT10 may be a promising therapy target for OC.</p>","PeriodicalId":9204,"journal":{"name":"BMC Women's Health","volume":"25 1","pages":"54"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Women's Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12905-025-03567-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer (OC) is the most lethal gynecological tumor. N4-acetylcytidine (ac4C) modification, catalyzed by the acetyltransferase NAT10, is involved in the occurrence and development of cancers. This study aimed to investigate the role of NAT10 in OC and the underlying molecular mechanisms. The expression of NAT10 and CAPRIN1 in OC cells lines were measured using quantitative real-time polymerase chain reaction and immunoblotting. Biological behaviors of OC cells were evaluated using EdU, Transwell, sphere formation, and immunoblotting assays. The molecular mechanism of NAT10 function was analyzed using bioinformatics, ac4C- RNA immunoprecipitation, and actinomycin D treatment assay. The effect of NAT10 on OC progression in vivo was evaluated using xenograft tumor model. The results indicated that NAT10 and CAPRIN1 were highly expressed in OC cells. NAT10 knockdown suppressed OC cell proliferation, migration, invasiveness, stemness, and epithelial-mesenchymal transition in vitro, and impeded tumor growth in vivo. Additionally, CAPRIN1 expression was found to be positively related to NAT10 expression in OC. Silencing of NAT10 inhibited ac4C levels of CAPRIN1 and reduced its RNA stability. Moreover, overexpression of CAPRIN1 reversed the suppression of migration, invasion, and stemness caused by NAT10 knockdown, while knockdown of CAPRIN1 alone inhibited these malignant behaviors of OC cells. In conclusion, NAT10 promotes OC progression by promoting cellular migration, invasion, and stemness via upregulating CAPRIN1 expression. Mechanistically, NAT10 stabilizes CAPRIN1 by promoting its ac4C modification. These findings suggest that NAT10 may be a promising therapy target for OC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Women's Health
BMC Women's Health OBSTETRICS & GYNECOLOGY-
CiteScore
3.40
自引率
4.00%
发文量
444
审稿时长
>12 weeks
期刊介绍: BMC Women''s Health is an open access, peer-reviewed journal that considers articles on all aspects of the health and wellbeing of adolescent girls and women, with a particular focus on the physical, mental, and emotional health of women in developed and developing nations. The journal welcomes submissions on women''s public health issues, health behaviours, breast cancer, gynecological diseases, mental health and health promotion.
期刊最新文献
Coping strategies utilized by patients with cervical cancer: an explorative qualitative study at the Ocean Road Cancer Institute in Dar es Salaam, Tanzania. Correction: Anxiety, depression, and stress: a comparative study between couples with male and female infertility. Menstrual waste management practices among female students in Niger delta development commission hostels in educational institutions in Niger delta, Nigeria. Increased plasma lipopolysaccharide-binding protein and altered inflammatory mediators reveal a pro-inflammatory state in overweight women. Modeling optimal combination of breast and cervical cancer screening strategies in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1