Development of a Short Telomere Zebrafish Model for Accelerated Aging Research and Antiaging Drug Screening.

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2025-02-08 DOI:10.1111/acel.70007
David Hernández-Silva, María D López-Abellán, Francisco J Martínez-Navarro, Jesús García-Castillo, María L Cayuela, Francisca Alcaraz-Pérez
{"title":"Development of a Short Telomere Zebrafish Model for Accelerated Aging Research and Antiaging Drug Screening.","authors":"David Hernández-Silva, María D López-Abellán, Francisco J Martínez-Navarro, Jesús García-Castillo, María L Cayuela, Francisca Alcaraz-Pérez","doi":"10.1111/acel.70007","DOIUrl":null,"url":null,"abstract":"<p><p>Increased life expectancy is associated with a higher risk of age-related diseases, which represent a major public health challenge. Animal models play a crucial role in aging research, enabling the study of diseases at the organism level and facilitating drug development and repurposing. Among these models, zebrafish stands out as an excellent in vivo system due to its unique characteristics. However, the longevity of zebrafish is a limitation for research, as it often takes too long to obtain results within a reasonable timeframe. To address this, we have developed a short telomere zebrafish line (ST2) with a premature aging phenotype during the larval stage. Although less extreme than the tert-deficient G2 larvae, ST2 larvae exhibit reduced telomerase expression and activity, along with shortened telomeres. they also exhibit increased cellular senescence, apoptosis, and premature death. As a proof of concept, we evaluated the antiaging effects of two compounds: resveratrol (a polyphenol) and navitoclax (a senolytic). Our results confirm the antiaging properties of resveratrol, which improves telomere maintenance. However, navitoclax does not attenuate the ST2 phenotype. Taking advantage of the zebrafish larval model, this premature aging system provides a valuable platform for in vivo testing of rejuvenating molecules through drug screening, using telomere length or survival as a readout.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70007"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increased life expectancy is associated with a higher risk of age-related diseases, which represent a major public health challenge. Animal models play a crucial role in aging research, enabling the study of diseases at the organism level and facilitating drug development and repurposing. Among these models, zebrafish stands out as an excellent in vivo system due to its unique characteristics. However, the longevity of zebrafish is a limitation for research, as it often takes too long to obtain results within a reasonable timeframe. To address this, we have developed a short telomere zebrafish line (ST2) with a premature aging phenotype during the larval stage. Although less extreme than the tert-deficient G2 larvae, ST2 larvae exhibit reduced telomerase expression and activity, along with shortened telomeres. they also exhibit increased cellular senescence, apoptosis, and premature death. As a proof of concept, we evaluated the antiaging effects of two compounds: resveratrol (a polyphenol) and navitoclax (a senolytic). Our results confirm the antiaging properties of resveratrol, which improves telomere maintenance. However, navitoclax does not attenuate the ST2 phenotype. Taking advantage of the zebrafish larval model, this premature aging system provides a valuable platform for in vivo testing of rejuvenating molecules through drug screening, using telomere length or survival as a readout.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
Large-Scale Clustered Transcriptional Silencing Associated With Cellular Senescence. Activated mTOR Signaling in the RPE Drives EMT, Autophagy, and Metabolic Disruption, Resulting in AMD-Like Pathology in Mice. The Impact of Toll-Like Receptor 5 on Liver Function in Age-Related Metabolic Disorders. Enhanced Microglial Engulfment of Dopaminergic Synapses Induces Parkinson's Disease-Related Executive Dysfunction in an Acute LPC Infusion Targeting the mPFC. Exploring Lymph Node Stroma Ageing: Immune Implications and Future Directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1