Transcription factor ATF3 aggravates kidney fibrosis by maintaining the state of histone H3 lysine 27 acetylation.

IF 7.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Chinese Medical Journal Pub Date : 2025-02-08 DOI:10.1097/CM9.0000000000003425
Lina Yang, Yilong Chen, Fan Guo, Bo Wang, Zhiye Ying, Yalan Kuang, Xiaoxi Zeng, Liang Ma, Haopeng Yu, Ping Fu
{"title":"Transcription factor ATF3 aggravates kidney fibrosis by maintaining the state of histone H3 lysine 27 acetylation.","authors":"Lina Yang, Yilong Chen, Fan Guo, Bo Wang, Zhiye Ying, Yalan Kuang, Xiaoxi Zeng, Liang Ma, Haopeng Yu, Ping Fu","doi":"10.1097/CM9.0000000000003425","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic kidney disease (CKD) is a global health issue, with renal fibrosis being a common pathway in CKD development. Histone modification plays crucial roles in transcriptional regulation, but their pathological functions and mechanisms in CKD are not well understood.</p><p><strong>Methods: </strong>We utilized chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-seq) and RNA-seq to evaluate the states and functions of H3 lysine 27 acetylation (H3K27ac) and H3 lysine 4 trimethylation (H3K4me3) in kidney of CKD mice. We identified epigenetic factors regulating H3K27ac through motif analysis. Expression of activating transcription factor 3 (ATF3) in CKD mouse models and patients' kidneys was validated via immunofluorescence staining or Western blot. We further generated the Atf3 deficient (Atf3-/-) mice to explore its effect in kidney function and fibrosis. ChIP-seq of H3K27ac from Atf3-/- CKD mice was employed to validate ATF3's regulatory effects. We explored how ATF3 maintains the state of H3K27ac by integrating the data sources from multiple databases.</p><p><strong>Results: </strong>The states of H3K27ac and H3K4me3 were changed during CKD, and positively correlated with differential gene expression. ATF3 was highly expressed in kidney of both patients and mice with CKD, and co-localized with H3K27ac in genome, epigenetically regulating H3K27ac state. Atf3 deficient in CKD mice significantly ameliorated kidney dysfunction and fibrotic phenotype, and reduced H3K27ac levels at the ATF3 binding sites. Mechanically, ATF3 may recruit the histone acetyltransferases (HATs) network to maintain the H3K27ac state during CKD.</p><p><strong>Conclusion: </strong>ATF3 promotes kidney injury and fibrosis in CKD by maintaining the state of H3k27ac via recruiting HATs network.</p>","PeriodicalId":10183,"journal":{"name":"Chinese Medical Journal","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CM9.0000000000003425","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic kidney disease (CKD) is a global health issue, with renal fibrosis being a common pathway in CKD development. Histone modification plays crucial roles in transcriptional regulation, but their pathological functions and mechanisms in CKD are not well understood.

Methods: We utilized chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-seq) and RNA-seq to evaluate the states and functions of H3 lysine 27 acetylation (H3K27ac) and H3 lysine 4 trimethylation (H3K4me3) in kidney of CKD mice. We identified epigenetic factors regulating H3K27ac through motif analysis. Expression of activating transcription factor 3 (ATF3) in CKD mouse models and patients' kidneys was validated via immunofluorescence staining or Western blot. We further generated the Atf3 deficient (Atf3-/-) mice to explore its effect in kidney function and fibrosis. ChIP-seq of H3K27ac from Atf3-/- CKD mice was employed to validate ATF3's regulatory effects. We explored how ATF3 maintains the state of H3K27ac by integrating the data sources from multiple databases.

Results: The states of H3K27ac and H3K4me3 were changed during CKD, and positively correlated with differential gene expression. ATF3 was highly expressed in kidney of both patients and mice with CKD, and co-localized with H3K27ac in genome, epigenetically regulating H3K27ac state. Atf3 deficient in CKD mice significantly ameliorated kidney dysfunction and fibrotic phenotype, and reduced H3K27ac levels at the ATF3 binding sites. Mechanically, ATF3 may recruit the histone acetyltransferases (HATs) network to maintain the H3K27ac state during CKD.

Conclusion: ATF3 promotes kidney injury and fibrosis in CKD by maintaining the state of H3k27ac via recruiting HATs network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Medical Journal
Chinese Medical Journal 医学-医学:内科
CiteScore
9.80
自引率
4.90%
发文量
19245
审稿时长
6 months
期刊介绍: The Chinese Medical Journal (CMJ) is published semimonthly in English by the Chinese Medical Association, and is a peer reviewed general medical journal for all doctors, researchers, and health workers regardless of their medical specialty or type of employment. Established in 1887, it is the oldest medical periodical in China and is distributed worldwide. The journal functions as a window into China’s medical sciences and reflects the advances and progress in China’s medical sciences and technology. It serves the objective of international academic exchange. The journal includes Original Articles, Editorial, Review Articles, Medical Progress, Brief Reports, Case Reports, Viewpoint, Clinical Exchange, Letter,and News,etc. CMJ is abstracted or indexed in many databases including Biological Abstracts, Chemical Abstracts, Index Medicus/Medline, Science Citation Index (SCI), Current Contents, Cancerlit, Health Plan & Administration, Embase, Social Scisearch, Aidsline, Toxline, Biocommercial Abstracts, Arts and Humanities Search, Nuclear Science Abstracts, Water Resources Abstracts, Cab Abstracts, Occupation Safety & Health, etc. In 2007, the impact factor of the journal by SCI is 0.636, and the total citation is 2315.
期刊最新文献
A deep-learning based system for diagnosing multitype gastric lesions under white-light endoscopy. Associations of physical activity, sedentary behavior, and sleep with risk of incident Parkinson's disease: A prospective cohort study of 401,697 participants. Associations of total, domain-specific, and intensity-specific physical activity with all-cause and cause-specific mortality in China: A population-based cohort study. Cluster analysis of comorbidity profiles reveals heterogeneity in hospitalized patients with chronic obstructive pulmonary disease. p300 upregulates Ikur in atrial cardiomyocytes through activating NLRP3 inflammasome in hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1