{"title":"Molecular imaging of cardiovascular disease: Current status and future perspective.","authors":"Takehiro Nakahara, Shinichiro Fujimoto, Masahiro Jinzaki","doi":"10.1016/j.jjcc.2025.01.017","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in knowledge of cardiovascular disease, pharmacology, and chemistry have led to the development of newer radiopharmaceuticals and targets for new and more suitable molecules. Molecular imaging encompasses multiple imaging techniques for identifying the characteristics of key components involved in disease. Despite its limitations in spatial resolution, the affinity for key molecules compensates for disadvantages in diagnosing diseases and elucidating their pathophysiology. This review introduce established molecular tracers involved in clinical practice and emerging tracers already applied in clinical studies, classifying the key component in A: artery, specifically those vulnerable plaque (A-I) inflammatory cells [<sup>18</sup>F-FDG]; A-II) lipid/fatty acid; A-III) hypoxia; A-IV) angiogenesis; A-V) protease [<sup>18</sup>F/<sup>68</sup>Ga-FAPI]; A-VI) thrombus/hemorrhage; A-VII) apoptosis and A-VIII) microcalcification [<sup>18</sup>F-NaF]) and B: myocardium, including myocardial ischemia, infarction and myocardiopathy (BI) myocardial ischemia; B-II) myocardial infarction (myocardial damage and fibrosis); B-III) myocarditis and endocarditis; B-IV) sarcoidosis; BV) amyloidosis; B-VI) metabolism; B-VII) innervation imaging). In addition to cardiovascular-specific tracers tested in animal models, many radiotracers may have been developed in other areas, such as oncology imaging or neuroimaging. While this review does not cover all available tracers, some of them hold potential for future use assessing cardiovascular disease. Advances in molecular biology, pharmaceuticals, and imaging sciences will facilitate the identification of precise disease mechanisms, enabling precise diagnoses, better assessment of disease status, and enhanced therapeutic evaluation in this multi-modality era.</p>","PeriodicalId":15223,"journal":{"name":"Journal of cardiology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jjcc.2025.01.017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in knowledge of cardiovascular disease, pharmacology, and chemistry have led to the development of newer radiopharmaceuticals and targets for new and more suitable molecules. Molecular imaging encompasses multiple imaging techniques for identifying the characteristics of key components involved in disease. Despite its limitations in spatial resolution, the affinity for key molecules compensates for disadvantages in diagnosing diseases and elucidating their pathophysiology. This review introduce established molecular tracers involved in clinical practice and emerging tracers already applied in clinical studies, classifying the key component in A: artery, specifically those vulnerable plaque (A-I) inflammatory cells [18F-FDG]; A-II) lipid/fatty acid; A-III) hypoxia; A-IV) angiogenesis; A-V) protease [18F/68Ga-FAPI]; A-VI) thrombus/hemorrhage; A-VII) apoptosis and A-VIII) microcalcification [18F-NaF]) and B: myocardium, including myocardial ischemia, infarction and myocardiopathy (BI) myocardial ischemia; B-II) myocardial infarction (myocardial damage and fibrosis); B-III) myocarditis and endocarditis; B-IV) sarcoidosis; BV) amyloidosis; B-VI) metabolism; B-VII) innervation imaging). In addition to cardiovascular-specific tracers tested in animal models, many radiotracers may have been developed in other areas, such as oncology imaging or neuroimaging. While this review does not cover all available tracers, some of them hold potential for future use assessing cardiovascular disease. Advances in molecular biology, pharmaceuticals, and imaging sciences will facilitate the identification of precise disease mechanisms, enabling precise diagnoses, better assessment of disease status, and enhanced therapeutic evaluation in this multi-modality era.
期刊介绍:
The official journal of the Japanese College of Cardiology is an international, English language, peer-reviewed journal publishing the latest findings in cardiovascular medicine. Journal of Cardiology (JC) aims to publish the highest-quality material covering original basic and clinical research on all aspects of cardiovascular disease. Topics covered include ischemic heart disease, cardiomyopathy, valvular heart disease, vascular disease, hypertension, arrhythmia, congenital heart disease, pharmacological and non-pharmacological treatment, new diagnostic techniques, and cardiovascular imaging. JC also publishes a selection of review articles, clinical trials, short communications, and important messages and letters to the editor.