Muñoz-Olivos Cristina, Bautista-Rodriguez Elizabeth, Rivas-Arreola María Jose, Palacios-Gonzalez Berenice, Zacapa Diego, Cortez-Sanchez Jose Luis
{"title":"Mechanisms and Therapeutic Potential of Key Anti-inflammatory Metabiotics: Trans-Vaccenic Acid, Indole-3-Lactic Acid, Thiamine, and Butyric Acid.","authors":"Muñoz-Olivos Cristina, Bautista-Rodriguez Elizabeth, Rivas-Arreola María Jose, Palacios-Gonzalez Berenice, Zacapa Diego, Cortez-Sanchez Jose Luis","doi":"10.1007/s12602-025-10475-9","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying metabolites produced by probiotic bacteria, also known as metabiotics, is becoming increasingly common due to their anti-inflammatory, anti-obesogenic, and immunomodulatory effects. Postbiotics alongside diet, regulate both physical and mental health, as the microbiota members can interact physically with host cells or through secretion of nutrients and metabiotics. These metabiotics also reduce the severity of certain metabolic disorders and support the proper functioning of various organs and systems. In this review, we describe the mechanisms of action of trans-vaccenic acid (TVA), indole-3-lactic acid (ILA), thiamine (vitamin B1), and butyric acid metabolites produced or induced by probiotics such as Lactobacillus and/or Bifidobacterium, among others and previously identified using analytical techniques such as mass spectrometry (LC-MS). Within their mechanisms of action, Trans-vaccenic acid exerts anti-inflammatory effects and helps alleviate complications associated with metabolic diseases. Indole metabolites promote IL-22 production and regulate epithelial cell proliferation and antimicrobial peptide production. Thiamin is essential for energy metabolism regulation, and butyric acid regulates the brain-gut axis and also regulates immune response. This review expands our understanding of the potential therapeutic use of metabiotics.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-025-10475-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying metabolites produced by probiotic bacteria, also known as metabiotics, is becoming increasingly common due to their anti-inflammatory, anti-obesogenic, and immunomodulatory effects. Postbiotics alongside diet, regulate both physical and mental health, as the microbiota members can interact physically with host cells or through secretion of nutrients and metabiotics. These metabiotics also reduce the severity of certain metabolic disorders and support the proper functioning of various organs and systems. In this review, we describe the mechanisms of action of trans-vaccenic acid (TVA), indole-3-lactic acid (ILA), thiamine (vitamin B1), and butyric acid metabolites produced or induced by probiotics such as Lactobacillus and/or Bifidobacterium, among others and previously identified using analytical techniques such as mass spectrometry (LC-MS). Within their mechanisms of action, Trans-vaccenic acid exerts anti-inflammatory effects and helps alleviate complications associated with metabolic diseases. Indole metabolites promote IL-22 production and regulate epithelial cell proliferation and antimicrobial peptide production. Thiamin is essential for energy metabolism regulation, and butyric acid regulates the brain-gut axis and also regulates immune response. This review expands our understanding of the potential therapeutic use of metabiotics.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.