Impact of Pesticide Exposure on Auditory Health: Mechanisms, Efferent System Disruption, and Public Health Implications.

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2025-02-05 DOI:10.1016/j.tox.2025.154071
Gonzalo Terreros, Claudio Cifuentes-Cabello, Amanda D'Espessailles, Felipe Munoz
{"title":"Impact of Pesticide Exposure on Auditory Health: Mechanisms, Efferent System Disruption, and Public Health Implications.","authors":"Gonzalo Terreros, Claudio Cifuentes-Cabello, Amanda D'Espessailles, Felipe Munoz","doi":"10.1016/j.tox.2025.154071","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticide exposure has been linked to adverse effects on auditory health, impacting both peripheral and central auditory systems. Studies suggest that organophosphate, carbamate, organochlorine, and pyrethroid pesticides disrupt auditory processing through oxidative stress, neuroinflammation, and interference with cholinergic signaling. These disruptions may compromise sensory hair cells, spiral ganglion neurons, and auditory pathways, impairing precise signal transmission. The auditory efferent system, responsible for cochlear protection and auditory signal modulation, appears particularly susceptible to pesticide-induced alterations. This system relies on cholinergic transmission to regulate cochlear amplification and selective attention, functions that may be disrupted by pesticide exposure. Evidence from epidemiological and experimental studies highlights the potential for long-term auditory dysfunction in populations exposed to pesticides, with agricultural workers and their families facing elevated risks due to prolonged contact with agrochemicals. This review integrates findings on pesticide exposure and its implications for auditory health, discussing potential peripheral and central ototoxicity pathways. The cumulative effects of chronic exposure are emphasized, including the gradual degradation of auditory processing capabilities. Additionally, the need for targeted interventions, such as audiological monitoring and enhanced safety protocols, is addressed. Further research is critical to elucidate the mechanisms underlying pesticide-induced auditory damage and identify protective strategies. Such investigations can inform evidence-based policies to mitigate the public health impact of pesticide exposure while maintaining agricultural productivity. A multidisciplinary approach is essential to safeguard auditory health in vulnerable populations exposed to these environmental hazards.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154071"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2025.154071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Pesticide exposure has been linked to adverse effects on auditory health, impacting both peripheral and central auditory systems. Studies suggest that organophosphate, carbamate, organochlorine, and pyrethroid pesticides disrupt auditory processing through oxidative stress, neuroinflammation, and interference with cholinergic signaling. These disruptions may compromise sensory hair cells, spiral ganglion neurons, and auditory pathways, impairing precise signal transmission. The auditory efferent system, responsible for cochlear protection and auditory signal modulation, appears particularly susceptible to pesticide-induced alterations. This system relies on cholinergic transmission to regulate cochlear amplification and selective attention, functions that may be disrupted by pesticide exposure. Evidence from epidemiological and experimental studies highlights the potential for long-term auditory dysfunction in populations exposed to pesticides, with agricultural workers and their families facing elevated risks due to prolonged contact with agrochemicals. This review integrates findings on pesticide exposure and its implications for auditory health, discussing potential peripheral and central ototoxicity pathways. The cumulative effects of chronic exposure are emphasized, including the gradual degradation of auditory processing capabilities. Additionally, the need for targeted interventions, such as audiological monitoring and enhanced safety protocols, is addressed. Further research is critical to elucidate the mechanisms underlying pesticide-induced auditory damage and identify protective strategies. Such investigations can inform evidence-based policies to mitigate the public health impact of pesticide exposure while maintaining agricultural productivity. A multidisciplinary approach is essential to safeguard auditory health in vulnerable populations exposed to these environmental hazards.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Mitochondrial activity and steroid secretion in mouse ovarian granulosa cells are suppressed by a PFAS mixture Hepatic and extra-hepatic metabolism of propylene glycol ethers in the context of central nervous system toxicity Benzyl butyl phthalate promotes ferroptosis in Sertoli cells via disrupting ceruloplasmin-mediated iron balance Impact of Pesticide Exposure on Auditory Health: Mechanisms, Efferent System Disruption, and Public Health Implications. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1