Structural Insight Into the SKP1-CUL1-FBXO3-RBX1 Complex.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Proteins-Structure Function and Bioinformatics Pub Date : 2025-02-08 DOI:10.1002/prot.26809
Jiajia Wei, Chao Xu
{"title":"Structural Insight Into the SKP1-CUL1-FBXO3-RBX1 Complex.","authors":"Jiajia Wei, Chao Xu","doi":"10.1002/prot.26809","DOIUrl":null,"url":null,"abstract":"<p><p>The cryo-EM structure of human SCF<sup>FBXO3</sup>, which consists of CUL1, RBX1, SKP1 and FBXO3 was solved at a nominal resolution of 3.70 Å. Although a previous study reported the crystal structure of the FBXO3 ApaG domain, how FBXO3 is incorporated into the SCF complex remains elusive. In the cryo-EM structure of SCF<sup>FBXO3</sup>, the F-box domain of FBXO3 primarily associates with SKP1 via extensive hydrophobic interactions and interacts with the N-terminal region of CUL1 via hydrophobic interactions. The weak cryo-EM map of the RBX1 globular region is close to the FBXO3 ApaG domain, suggesting that unmodified SCF<sup>FBXO3</sup> exhibits a closed conformation and that CUL1 neddylation is likely required to achieve high E3 activity. The structural study provides insight into the assembly of SCF<sup>FBXO3</sup> and its activation mediated by CUL1 neddylation.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26809","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cryo-EM structure of human SCFFBXO3, which consists of CUL1, RBX1, SKP1 and FBXO3 was solved at a nominal resolution of 3.70 Å. Although a previous study reported the crystal structure of the FBXO3 ApaG domain, how FBXO3 is incorporated into the SCF complex remains elusive. In the cryo-EM structure of SCFFBXO3, the F-box domain of FBXO3 primarily associates with SKP1 via extensive hydrophobic interactions and interacts with the N-terminal region of CUL1 via hydrophobic interactions. The weak cryo-EM map of the RBX1 globular region is close to the FBXO3 ApaG domain, suggesting that unmodified SCFFBXO3 exhibits a closed conformation and that CUL1 neddylation is likely required to achieve high E3 activity. The structural study provides insight into the assembly of SCFFBXO3 and its activation mediated by CUL1 neddylation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
期刊最新文献
The Crystal Structure of the Domain of Unknown Function 1480 (DUF1480) From Klebsiella pneumoniae. Unveiling the Complexity of cis-Regulation Mechanisms in Kinases: A Comprehensive Analysis. Based on Molecular Docking, Molecular Dynamics Simulation and MM/PB(GB)SA to Study Potential Inhibitors of PRRSV-Nsp4. Sequence-Similar Protein Domain Pairs With Structural or Topological Dissimilarity. Impact of N-Terminal Domain Conformation and Domain Interactions on RfaH Fold Switching.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1