A murine model of aortic regurgitation generated by trans-apical wire destruction of the aortic valve.

Q1 Health Professions Animal models and experimental medicine Pub Date : 2025-02-07 DOI:10.1002/ame2.12558
Xiaoxia Huang, Qiancheng Wang, Dan Han, Hairuo Lin, Zhihong Li, Cankun Zheng, Jianping Bin, Wangjun Liao, Zhanchun Cong, Mengjia Shen, Yulin Liao
{"title":"A murine model of aortic regurgitation generated by trans-apical wire destruction of the aortic valve.","authors":"Xiaoxia Huang, Qiancheng Wang, Dan Han, Hairuo Lin, Zhihong Li, Cankun Zheng, Jianping Bin, Wangjun Liao, Zhanchun Cong, Mengjia Shen, Yulin Liao","doi":"10.1002/ame2.12558","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The mechanisms underlying cardiac remodeling in aortic valvular (AoV) disease remain poorly understood, partially due to the insufficiency of appropriate preclinical animal models. Here, we present a novel murine model of aortic regurgitation (AR) generated by trans-apical wire destruction of the AoV.</p><p><strong>Methods: </strong>Directed by echocardiography, apical puncture of the left ventricle (LV) was performed in adult male C57BL/6 mice, and a metal guidewire was used to induce AoV destruction. Echocardiography, invasive LV hemodynamic and histological examination were conducted to assess the degree of AR, LV function and remodeling.</p><p><strong>Results: </strong>AR mice exhibited rapid aortic regurgitation velocity (424 ± 15.22 mm/s) immediately following successful surgery. Four weeks post-surgery, echocardiography revealed a 54.6% increase in LV diastolic diameter and a 55.1% decrease in LV ejection fraction in AR mice compared to sham mice. Pressure-volume catheterization indicated that AR mice had significantly larger LV end-diastolic volumes (66.2 ± 1.5 μL vs. 41.8 ± 3.4 μL), reduced LV contractility (lower dP/dt<sub>max</sub> and Ees), and diminished LV compliance (smaller dP/dt<sub>min</sub> and longer Tau) compared to sham mice. Histological examination demonstrated that AR mice had significantly larger cardiomyocyte area and more myocardial fibrosis in LV tissue, as well as a 107% and a 122% increase of heart weight/tibial length and lung weight/tibial length, respectively, relative to sham mice.</p><p><strong>Conclusions: </strong>The trans-apex wire-induced destruction of the AoV establishes a novel and efficient murine model to develop AR, characterized by significant eccentric LV hypertrophy, heart failure, and pulmonary congestion.</p>","PeriodicalId":93869,"journal":{"name":"Animal models and experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal models and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ame2.12558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The mechanisms underlying cardiac remodeling in aortic valvular (AoV) disease remain poorly understood, partially due to the insufficiency of appropriate preclinical animal models. Here, we present a novel murine model of aortic regurgitation (AR) generated by trans-apical wire destruction of the AoV.

Methods: Directed by echocardiography, apical puncture of the left ventricle (LV) was performed in adult male C57BL/6 mice, and a metal guidewire was used to induce AoV destruction. Echocardiography, invasive LV hemodynamic and histological examination were conducted to assess the degree of AR, LV function and remodeling.

Results: AR mice exhibited rapid aortic regurgitation velocity (424 ± 15.22 mm/s) immediately following successful surgery. Four weeks post-surgery, echocardiography revealed a 54.6% increase in LV diastolic diameter and a 55.1% decrease in LV ejection fraction in AR mice compared to sham mice. Pressure-volume catheterization indicated that AR mice had significantly larger LV end-diastolic volumes (66.2 ± 1.5 μL vs. 41.8 ± 3.4 μL), reduced LV contractility (lower dP/dtmax and Ees), and diminished LV compliance (smaller dP/dtmin and longer Tau) compared to sham mice. Histological examination demonstrated that AR mice had significantly larger cardiomyocyte area and more myocardial fibrosis in LV tissue, as well as a 107% and a 122% increase of heart weight/tibial length and lung weight/tibial length, respectively, relative to sham mice.

Conclusions: The trans-apex wire-induced destruction of the AoV establishes a novel and efficient murine model to develop AR, characterized by significant eccentric LV hypertrophy, heart failure, and pulmonary congestion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Disruption of the blood-brain barrier contributes to neurobehavioral changes observed in rheumatic heart disease. Astaxanthin ameliorates benzalkonium chloride-induced dry eye disease through suppressing inflammation and oxidative stress via Keap1-Nrf2/HO-1 signaling pathways. Cover Picture Issue Information Development of a single-nucleotide polymorphism panel genotyping system for genetic analysis of Chinese hamsters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1