Mahdi Fasihi, Fatemeh Jouzi, Petri Tervasmäki, Pasi Vainikka, Christian Breyer
{"title":"Global potential of sustainable single-cell protein based on variable renewable electricity","authors":"Mahdi Fasihi, Fatemeh Jouzi, Petri Tervasmäki, Pasi Vainikka, Christian Breyer","doi":"10.1038/s41467-025-56364-1","DOIUrl":null,"url":null,"abstract":"<p>The environmental impacts of the food system exceed several planetary boundaries, with protein production being a major contributor. Single-Cell Protein (SCP) is a protein-rich microbial biomass that offers a sustainable alternative when derived from renewable energy and sustainable feedstocks. We evaluate the global potential for SCP production utilising electrolytic hydrogen and oxygen, atmospheric carbon dioxide and nitrogen, and hourly-optimised hybrid PV-wind power plants at a 0.45° × 0.45° spatial resolution. We outline a roadmap for industrial-scale production, commencing in 2028, targeting an annual capacity of 30 million tonnes of protein by 2050. Here we show that the cost of renewable electricity-based protein (e-protein) could decline at optimal sites from 5.5–6.1 € kg<sup>−1</sup> in 2028 to 4.0–4.5 € kg<sup>−1</sup> by 2030, and further to 2.1–2.3 € kg<sup>−1</sup> by 2050. Consequently, e-protein production can mostly decouple protein supply from water and arable land constraints, substantially mitigating the environmental impacts of food production.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"22 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56364-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental impacts of the food system exceed several planetary boundaries, with protein production being a major contributor. Single-Cell Protein (SCP) is a protein-rich microbial biomass that offers a sustainable alternative when derived from renewable energy and sustainable feedstocks. We evaluate the global potential for SCP production utilising electrolytic hydrogen and oxygen, atmospheric carbon dioxide and nitrogen, and hourly-optimised hybrid PV-wind power plants at a 0.45° × 0.45° spatial resolution. We outline a roadmap for industrial-scale production, commencing in 2028, targeting an annual capacity of 30 million tonnes of protein by 2050. Here we show that the cost of renewable electricity-based protein (e-protein) could decline at optimal sites from 5.5–6.1 € kg−1 in 2028 to 4.0–4.5 € kg−1 by 2030, and further to 2.1–2.3 € kg−1 by 2050. Consequently, e-protein production can mostly decouple protein supply from water and arable land constraints, substantially mitigating the environmental impacts of food production.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.