Yuta Takahashi, Hayato Idei, Misako Komatsu, Jun Tani, Hiroaki Tomita, Yuichi Yamashita
{"title":"Digital twin brain simulator for real-time consciousness monitoring and virtual intervention using primate electrocorticogram data","authors":"Yuta Takahashi, Hayato Idei, Misako Komatsu, Jun Tani, Hiroaki Tomita, Yuichi Yamashita","doi":"10.1038/s41746-025-01444-1","DOIUrl":null,"url":null,"abstract":"<p>At the forefront of bridging computational brain modeling with personalized medicine, this study introduces a novel, real-time, electrocorticogram (ECoG) simulator, based on the digital twin brain concept. Utilizing advanced data assimilation techniques, specifically a Variational Bayesian Recurrent Neural Network model with hierarchical latent units, the simulator dynamically predicts ECoG signals reflecting real-time brain latent states. By assimilating broad ECoG signals from macaque monkeys across awake and anesthetized conditions, the model successfully updated its latent states in real-time, enhancing precision of ECoG signal simulations. Behind successful data assimilation, self-organization of latent states in the model was observed, reflecting brain states and individuality. This self-organization facilitated simulation of virtual drug administration and uncovered functional networks underlying changes in brain function during anesthesia. These results show that the proposed model can simulate brain signals in real-time with high accuracy and is also useful for revealing underlying information processing dynamics.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"41 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01444-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
At the forefront of bridging computational brain modeling with personalized medicine, this study introduces a novel, real-time, electrocorticogram (ECoG) simulator, based on the digital twin brain concept. Utilizing advanced data assimilation techniques, specifically a Variational Bayesian Recurrent Neural Network model with hierarchical latent units, the simulator dynamically predicts ECoG signals reflecting real-time brain latent states. By assimilating broad ECoG signals from macaque monkeys across awake and anesthetized conditions, the model successfully updated its latent states in real-time, enhancing precision of ECoG signal simulations. Behind successful data assimilation, self-organization of latent states in the model was observed, reflecting brain states and individuality. This self-organization facilitated simulation of virtual drug administration and uncovered functional networks underlying changes in brain function during anesthesia. These results show that the proposed model can simulate brain signals in real-time with high accuracy and is also useful for revealing underlying information processing dynamics.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.