Meifei Chen, Ziqiao Wu, Zhanxiong Qiu, Junhao Peng, Wei Gao, Mengmeng Yang, Le Huang, Jiandong Yao, Yu Zhao, Zhaoqiang Zheng, Yao Ni, Jingbo Li
{"title":"Lensless Polarimetric Imaging and Encryption Enabled by Te/ReSe2 van der Waals Heterostructure Polarization-Sensitive Photodetector","authors":"Meifei Chen, Ziqiao Wu, Zhanxiong Qiu, Junhao Peng, Wei Gao, Mengmeng Yang, Le Huang, Jiandong Yao, Yu Zhao, Zhaoqiang Zheng, Yao Ni, Jingbo Li","doi":"10.1021/acs.nanolett.4c06629","DOIUrl":null,"url":null,"abstract":"Polarimetric imaging and encryption improve target recognition precision and information security, enhancing image sensors’ perceptual acuity and interference resilience. However, the miniaturization of sensing systems faces challenges due to the complex integration of dispersive optical components such as polarizers. To address this, we propose a polarization-sensitive photodetector using a Te/ReSe<sub>2</sub> van der Waals heterostructure. This design leverages type-II band alignment for efficient photocarrier segregation. The anisotropic crystal orientations of ReSe<sub>2</sub> and Te layers integrate photon absorption with photocarrier extraction, boosting the functionality. The Te/ReSe<sub>2</sub> device offers a broad spectral photoresponse (300–965 nm), a high polarization ratio of 8.9, and a fast response time of 55.4/55.7 μs at 635 nm. These properties enable high-resolution polarimetric imaging and precise image processing. This study provides a blueprint for developing miniaturized polarization-sensitive photodetectors and advancing lensless polarimetric optoelectronics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06629","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polarimetric imaging and encryption improve target recognition precision and information security, enhancing image sensors’ perceptual acuity and interference resilience. However, the miniaturization of sensing systems faces challenges due to the complex integration of dispersive optical components such as polarizers. To address this, we propose a polarization-sensitive photodetector using a Te/ReSe2 van der Waals heterostructure. This design leverages type-II band alignment for efficient photocarrier segregation. The anisotropic crystal orientations of ReSe2 and Te layers integrate photon absorption with photocarrier extraction, boosting the functionality. The Te/ReSe2 device offers a broad spectral photoresponse (300–965 nm), a high polarization ratio of 8.9, and a fast response time of 55.4/55.7 μs at 635 nm. These properties enable high-resolution polarimetric imaging and precise image processing. This study provides a blueprint for developing miniaturized polarization-sensitive photodetectors and advancing lensless polarimetric optoelectronics.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.