Streamlining Sulfated Oligosaccharide and Glycan Synthesis with Engineered Mutant 6-SulfoGlcNAcases

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-10 DOI:10.1021/jacs.4c14102
Rajneesh K. Bains, Feng Liu, Seyed A. Nasseri, Jacob F. Wardman, Stephen G. Withers
{"title":"Streamlining Sulfated Oligosaccharide and Glycan Synthesis with Engineered Mutant 6-SulfoGlcNAcases","authors":"Rajneesh K. Bains, Feng Liu, Seyed A. Nasseri, Jacob F. Wardman, Stephen G. Withers","doi":"10.1021/jacs.4c14102","DOIUrl":null,"url":null,"abstract":"Sulfation is a common, but poorly understood, post-glycosylational modification (PGM) used to modulate biological function. To deepen our understanding of the roles of various sulfated glycoforms and their relevant binding proteins, we must expand our enzymatic toolkit for their synthesis. Here, we bypass the need for both sulfotransferases and glycosyltransferases by engineering a series of mutants of a 6-SulfoGlcNAcase, from <i>Streptococcus pneumoniae</i>, to directly and efficiently synthesize not only the ubiquitous 6S-GlcNAc-β-1,3-Gal linkage prevalent within host glycans, but also the 6S-GlcNAc-β-1,6-GalNAc commonly observed within core-6 O-glycans, and the more exotic 6S-GlcNAc-β-1,4-GalNAc linkage. We further elaborate these into complex sulfated N-glycan and O-glycan structures of biological relevance. By utilizing the cost-effective activated donor pNP-6S-GlcNAc in conjunction with mutant GH185 6-SulfoGlcNAcases we demonstrate a simple yet powerful <i>in vitro</i> method for generating well-defined sulfated oligosaccharides and glycoforms for use in a variety of applications including glycan arrays, glycan remodeling, and specificity studies with carbohydrate binding proteins such as lectins.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"13 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfation is a common, but poorly understood, post-glycosylational modification (PGM) used to modulate biological function. To deepen our understanding of the roles of various sulfated glycoforms and their relevant binding proteins, we must expand our enzymatic toolkit for their synthesis. Here, we bypass the need for both sulfotransferases and glycosyltransferases by engineering a series of mutants of a 6-SulfoGlcNAcase, from Streptococcus pneumoniae, to directly and efficiently synthesize not only the ubiquitous 6S-GlcNAc-β-1,3-Gal linkage prevalent within host glycans, but also the 6S-GlcNAc-β-1,6-GalNAc commonly observed within core-6 O-glycans, and the more exotic 6S-GlcNAc-β-1,4-GalNAc linkage. We further elaborate these into complex sulfated N-glycan and O-glycan structures of biological relevance. By utilizing the cost-effective activated donor pNP-6S-GlcNAc in conjunction with mutant GH185 6-SulfoGlcNAcases we demonstrate a simple yet powerful in vitro method for generating well-defined sulfated oligosaccharides and glycoforms for use in a variety of applications including glycan arrays, glycan remodeling, and specificity studies with carbohydrate binding proteins such as lectins.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Streamlining Sulfated Oligosaccharide and Glycan Synthesis with Engineered Mutant 6-SulfoGlcNAcases Designed Synthesis of Covalent Organic Multicycles Lattice Oxygen-Driven Co-Adsorption of Carbon Dioxide and Nitrate on Copper: A Pathway to Efficient Urea Electrosynthesis Stereoselective Chemoenzymatic Cascades for the Synthesis of Densely Functionalized Iminosugars Catalysis of Free C–C Bond Rotation: C–F---H–X H-Bonds Find a Catalytic Role
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1