Investigating Pore Characteristics and Their Dependence on Shale Composition: Case Study from a Permian Basin in India

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2025-02-02 DOI:10.1021/acsomega.4c0721410.1021/acsomega.4c07214
Saheli Ghosh Dastidar, Kripamoy Sarkar, Debanjan Chandra, Bodhisatwa Hazra and Vikram Vishal*, 
{"title":"Investigating Pore Characteristics and Their Dependence on Shale Composition: Case Study from a Permian Basin in India","authors":"Saheli Ghosh Dastidar,&nbsp;Kripamoy Sarkar,&nbsp;Debanjan Chandra,&nbsp;Bodhisatwa Hazra and Vikram Vishal*,&nbsp;","doi":"10.1021/acsomega.4c0721410.1021/acsomega.4c07214","DOIUrl":null,"url":null,"abstract":"<p >Shale reservoirs, often acting as caprocks for conventional hydrocarbon reservoirs, exhibit moderate to high porosity and remarkably low permeability. Organic-rich shales serve as reservoirs for unconventional hydrocarbons. This study focused on evaluating the characteristics of the source rocks and the factors influencing pore parameters in organic-rich shale from a Permian Basin in India, exploring its feasibility as both a CO<sub>2</sub> sink and a natural gas source. Experimental techniques were employed to explore the mineral and the organic matter characteristics along with attributes of the pores hosted within them. The investigated shales displayed diverse thermal maturity levels, spanning from that in oil-prone to gas-prone zones, with the total organic carbon content varying from 0.72 to 24.98 wt %, indicating substantial organic richness. Rock-Eval pyrolysis results revealed a range of thermal maturity (<i>T</i><sub>max</sub>) values between 426 and 474 °C, while X-ray diffraction analysis indicated significant quantities of illite and kaolinite, along with trace amounts of pyrite in certain samples. Field-emission scanning electron microscopy imaging and its detailed interpretation provided valuable insights into the pore structure and arrangement. In our study, we found that both the clay content and the organic matter significantly contribute to gas adsorption. While clay content strongly influences mesopore attributes, the organic matter predominantly affects micropore attributes. Furthermore, a direct relationship among fractal dimension, surface area, and pore volume, indicating increased complexities with these variables. Our examination of mesopore fractal attributes revealed that smaller mesopores exhibit a more convoluted and irregular configuration in comparison to the larger ones. These findings provide significant insights into the pore morphology of the analyzed shale sample.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 5","pages":"4395–4405 4395–4405"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07214","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07214","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Shale reservoirs, often acting as caprocks for conventional hydrocarbon reservoirs, exhibit moderate to high porosity and remarkably low permeability. Organic-rich shales serve as reservoirs for unconventional hydrocarbons. This study focused on evaluating the characteristics of the source rocks and the factors influencing pore parameters in organic-rich shale from a Permian Basin in India, exploring its feasibility as both a CO2 sink and a natural gas source. Experimental techniques were employed to explore the mineral and the organic matter characteristics along with attributes of the pores hosted within them. The investigated shales displayed diverse thermal maturity levels, spanning from that in oil-prone to gas-prone zones, with the total organic carbon content varying from 0.72 to 24.98 wt %, indicating substantial organic richness. Rock-Eval pyrolysis results revealed a range of thermal maturity (Tmax) values between 426 and 474 °C, while X-ray diffraction analysis indicated significant quantities of illite and kaolinite, along with trace amounts of pyrite in certain samples. Field-emission scanning electron microscopy imaging and its detailed interpretation provided valuable insights into the pore structure and arrangement. In our study, we found that both the clay content and the organic matter significantly contribute to gas adsorption. While clay content strongly influences mesopore attributes, the organic matter predominantly affects micropore attributes. Furthermore, a direct relationship among fractal dimension, surface area, and pore volume, indicating increased complexities with these variables. Our examination of mesopore fractal attributes revealed that smaller mesopores exhibit a more convoluted and irregular configuration in comparison to the larger ones. These findings provide significant insights into the pore morphology of the analyzed shale sample.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead Predictive Significance of Glycosyltransferase-Related lncRNAs in Endometrial Cancer: A Comprehensive Analysis and Experimental Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1