Breast cancer ultrasound image segmentation using improved 3DUnet++

Saba Hesaraki , Abdul Sajid Mohammed , Mehrshad Eisaei , Ramin Mousa
{"title":"Breast cancer ultrasound image segmentation using improved 3DUnet++","authors":"Saba Hesaraki ,&nbsp;Abdul Sajid Mohammed ,&nbsp;Mehrshad Eisaei ,&nbsp;Ramin Mousa","doi":"10.1016/j.wfumbo.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer is the most common cancer and the main cause of cancer-related deaths in women around the world. Early detection reduces the number of deaths. Automated breast ultrasound (ABUS) is a new and promising screening method for examining the entire breast. Volumetric ABUS examination is time-consuming, and lesions may be missed during the examination. Therefore, computer-aided cancer diagnosis in ABUS volume is highly expected to help the physician for breast cancer screening. In this research, we presented 3D structures based on UNet, ResUNet, and UNet++ for the automatic detection of cancer in ABUS volume to speed up examination while providing high detection sensitivity with low false positives (FPs). The three investigated approaches were evaluated on equal datasets in terms of training and testing as well as with proportional hyperparameters. Among the proposed approaches in classification and segmentation problems, the UNet++ approach was able to achieve more acceptable results. The UNet++ approach on the dataset of the Tumor Segmentation, Classification, and Detection Challenge on Automated 3D Breast Ultrasound 2023 (Named TSCD-ABUS2023) was able to achieve Accuracy ​= ​0.9911 and AUROC ​= ​0.9761 in classification and Dice ​= ​0.4930 in segmentation.</div></div>","PeriodicalId":101281,"journal":{"name":"WFUMB Ultrasound Open","volume":"3 1","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WFUMB Ultrasound Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949668324000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is the most common cancer and the main cause of cancer-related deaths in women around the world. Early detection reduces the number of deaths. Automated breast ultrasound (ABUS) is a new and promising screening method for examining the entire breast. Volumetric ABUS examination is time-consuming, and lesions may be missed during the examination. Therefore, computer-aided cancer diagnosis in ABUS volume is highly expected to help the physician for breast cancer screening. In this research, we presented 3D structures based on UNet, ResUNet, and UNet++ for the automatic detection of cancer in ABUS volume to speed up examination while providing high detection sensitivity with low false positives (FPs). The three investigated approaches were evaluated on equal datasets in terms of training and testing as well as with proportional hyperparameters. Among the proposed approaches in classification and segmentation problems, the UNet++ approach was able to achieve more acceptable results. The UNet++ approach on the dataset of the Tumor Segmentation, Classification, and Detection Challenge on Automated 3D Breast Ultrasound 2023 (Named TSCD-ABUS2023) was able to achieve Accuracy ​= ​0.9911 and AUROC ​= ​0.9761 in classification and Dice ​= ​0.4930 in segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Added clinical advantage of combining ultrasound with radiograph in assessing ankle injuries: Comparison with MRI Treatment of inoperable pancreatic adenocarcinoma with focused ultrasound and microbubbles in patients receiving chemotherapy Breast cancer ultrasound image segmentation using improved 3DUnet++ Utilization of evoked vibrational signatures under ultrasound examination as a novel method of tissue classification Protocol refinement and inter- and intra-rater reliability assessment of ultrasound-based measurements of hamstring architecture, and echo intensity, and intra-rater reliability of shear wave elastography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1