Landfill site selection in hilly terrains: An integrated RS-GIS approach with AHP and VIKOR

Shobhit Chaturvedi , Naimish Bhatt , Vatsal Shah , Keval H. Jodhani , Dhruvesh Patel , Sudhir Kumar Singh
{"title":"Landfill site selection in hilly terrains: An integrated RS-GIS approach with AHP and VIKOR","authors":"Shobhit Chaturvedi ,&nbsp;Naimish Bhatt ,&nbsp;Vatsal Shah ,&nbsp;Keval H. Jodhani ,&nbsp;Dhruvesh Patel ,&nbsp;Sudhir Kumar Singh","doi":"10.1016/j.wmb.2025.01.010","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel integrated Geographic Information System-Multi-Criteria Decision Making (GIS-MCDM) framework for evaluating landfill site suitability in Shimla, India, a rapidly urbanizing hill station. Combining Remote Sensing-Geographic Information Systems (RS-GIS) with the Analytical Hierarchy Process (AHP) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods, the framework developed a Landfill Suitability Zoning map and ranked potential sites. The Land Suitability Index (LSI), derived using AHP, categorized the 124 sq. km study area into five suitability classes, with key factors influencing rankings: Landslide Proximity (weight: 0.162), Ground Slope (0.138), Land Use and Cover (0.122), Ground Elevation (0.114), and Road Proximity (0.095). From the Very High suitability zones, eight candidate sites were identified and ranked using VIKOR, with Kiargiri (score: 0.083) identified as the most suitable, followed by Baboloo (0.530), Karog (0.535), and Phayal Road (0.663). Sensitivity Analysis (SA) was conducted across five scenarios to account for possible variations in expert judgment, with the first three increasing beneficial weights (10 %, 15 %, and 20 %) and the last two decreasing beneficial weights (15 % and 20 %), proportionally adjusting non-beneficial weights. The SA confirmed the consistency and robustness of the rankings, with Kiargiri (0.083), Baboloo (0.530), Karog (0.535), and Phayal Road (0.663) maintaining top positions despite varying weight configurations. This approach offers a reliable, adaptable framework for landfill site selection in hilly urban areas, supporting waste management, sustainable development and environmental conservation.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 1","pages":"Pages 332-348"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750725000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel integrated Geographic Information System-Multi-Criteria Decision Making (GIS-MCDM) framework for evaluating landfill site suitability in Shimla, India, a rapidly urbanizing hill station. Combining Remote Sensing-Geographic Information Systems (RS-GIS) with the Analytical Hierarchy Process (AHP) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods, the framework developed a Landfill Suitability Zoning map and ranked potential sites. The Land Suitability Index (LSI), derived using AHP, categorized the 124 sq. km study area into five suitability classes, with key factors influencing rankings: Landslide Proximity (weight: 0.162), Ground Slope (0.138), Land Use and Cover (0.122), Ground Elevation (0.114), and Road Proximity (0.095). From the Very High suitability zones, eight candidate sites were identified and ranked using VIKOR, with Kiargiri (score: 0.083) identified as the most suitable, followed by Baboloo (0.530), Karog (0.535), and Phayal Road (0.663). Sensitivity Analysis (SA) was conducted across five scenarios to account for possible variations in expert judgment, with the first three increasing beneficial weights (10 %, 15 %, and 20 %) and the last two decreasing beneficial weights (15 % and 20 %), proportionally adjusting non-beneficial weights. The SA confirmed the consistency and robustness of the rankings, with Kiargiri (0.083), Baboloo (0.530), Karog (0.535), and Phayal Road (0.663) maintaining top positions despite varying weight configurations. This approach offers a reliable, adaptable framework for landfill site selection in hilly urban areas, supporting waste management, sustainable development and environmental conservation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid on-site maturity and stability assessment of sewage sludge compost by mathematical treatment of UV and fluorescence spectroscopic data Profiling PBDE emissions from coastal landfills: Impact of waste management practices Sustainable recovery of rare Earth elements from industrial waste: A path to circular economy and environmental health Two inorganic materials were prepared by calcination-acid leaching combined treatment of coal gangue: Al&Fe enriched acid solution and Si enriched material A novel Hausdorff fractional grey Bernoulli model and its Application in forecasting electronic waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1