Taiyong Zou , Zhenqian Lang , Ruilong Lu , Jiawei Liu , Xianglai Xu
{"title":"Tensile deformation and fracture behavior at high temperature of the TLP joint for Hastelloy X superalloy with laminated interlayer","authors":"Taiyong Zou , Zhenqian Lang , Ruilong Lu , Jiawei Liu , Xianglai Xu","doi":"10.1016/j.engfailanal.2025.109363","DOIUrl":null,"url":null,"abstract":"<div><div>Transient liquid phase diffusion bonding of Hastelloy X superalloy was performed using laminated foils of BNi-5 / BNi-5 and BNi-5 / Ni / BNi-5, respectively. A comprehensive analysis, combining experimental observations and crystal plasticity finite element analysis, was conducted to examine the microstructure, deformation, and fracture behavior of the joints. Both joints, bonded at 1170 °C for 4 h comprised an isothermal solidification zone (ISZ) and a diffusion affected zone (DAZ). The ISZ of the joint employing BNi-5 / BNi-5 exhibited columnar characteristics, with fine grains distributed on its flanks. During tensile testing, stress concentration arose at the ISZ-DAZ interface due to grain structure inhomogeneity. Furthermore, large size silicides were precipitated in the DAZ and at the the ISZ-DAZ interface. Under the stress concentration, cracks initiated at silicides and propagated along the interface, leading to a brittle fracture. The joint bonded with BNi-5 / BNi-5 possessed a tensile strength of 310 MPa and an elongation of 12.03 % at 750 °C, which amounted to 81.3 % and 32.5 % of the respective properties of the base material. The addition of Ni significantly increased the microstructure uniformity and inhibited the precipitation of silicides. The plasticity of the joint was improved and the fracture mode changed to intergranular ductile fracture. The tensile strength and elongation at 750 °C of the joint bonded with BNi-5 / Ni / BNi-5 were 305.4 MPa and 17.87 %, corresponding to 80.0 % and 48.2 % of the respective properties of the base material.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"171 ","pages":"Article 109363"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725001049","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transient liquid phase diffusion bonding of Hastelloy X superalloy was performed using laminated foils of BNi-5 / BNi-5 and BNi-5 / Ni / BNi-5, respectively. A comprehensive analysis, combining experimental observations and crystal plasticity finite element analysis, was conducted to examine the microstructure, deformation, and fracture behavior of the joints. Both joints, bonded at 1170 °C for 4 h comprised an isothermal solidification zone (ISZ) and a diffusion affected zone (DAZ). The ISZ of the joint employing BNi-5 / BNi-5 exhibited columnar characteristics, with fine grains distributed on its flanks. During tensile testing, stress concentration arose at the ISZ-DAZ interface due to grain structure inhomogeneity. Furthermore, large size silicides were precipitated in the DAZ and at the the ISZ-DAZ interface. Under the stress concentration, cracks initiated at silicides and propagated along the interface, leading to a brittle fracture. The joint bonded with BNi-5 / BNi-5 possessed a tensile strength of 310 MPa and an elongation of 12.03 % at 750 °C, which amounted to 81.3 % and 32.5 % of the respective properties of the base material. The addition of Ni significantly increased the microstructure uniformity and inhibited the precipitation of silicides. The plasticity of the joint was improved and the fracture mode changed to intergranular ductile fracture. The tensile strength and elongation at 750 °C of the joint bonded with BNi-5 / Ni / BNi-5 were 305.4 MPa and 17.87 %, corresponding to 80.0 % and 48.2 % of the respective properties of the base material.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.