The polarization of macrophages participates in the repair after folic acid-induced acute kidney injury

IF 3.7 4区 医学 Q2 CELL BIOLOGY Cellular immunology Pub Date : 2025-02-10 DOI:10.1016/j.cellimm.2025.104929
Shujie Yang , Yan Shen
{"title":"The polarization of macrophages participates in the repair after folic acid-induced acute kidney injury","authors":"Shujie Yang ,&nbsp;Yan Shen","doi":"10.1016/j.cellimm.2025.104929","DOIUrl":null,"url":null,"abstract":"<div><div>Acute kidney injury (AKI) remains a major public health challenge, posing serious threats to human health. Increasing evidence indicates that renal cells undergo significant metabolic alterations following AKI, with inflammatory responses persisting throughout both injury and repair phases. Our previous research has demonstrated that heightened aerobic glycolysis after AKI leads to increased secretion of metabolic byproducts such as lactate, which plays a critical role in tissue repair. However, the relationship between metabolic reprogramming and inflammatory responses, as well as the underlying mechanisms, remain poorly understood. This study aims to clarify the regulatory effects of the glycolytic byproduct lactate on macrophage activation and phenotypic differentiation following AKI. We observed increased expression of M1/M2 macrophages and elevated secretion of inflammatory cytokines after folic acid-induced AKI. Immunofluorescence staining showed co-localization of macrophages with α-SMA. Manipulating lactate levels post-injury led to a decrease in macrophage expression and a reduction in fibroblast activation and proliferation, ultimately impairing renal tissue repair. These findings suggest that targeting lactate as a key regulator of macrophage phenotype differentiation may provide a theoretical and clinical foundation for therapeutic strategies in AKI repair.</div></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"409 ","pages":"Article 104929"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874925000140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute kidney injury (AKI) remains a major public health challenge, posing serious threats to human health. Increasing evidence indicates that renal cells undergo significant metabolic alterations following AKI, with inflammatory responses persisting throughout both injury and repair phases. Our previous research has demonstrated that heightened aerobic glycolysis after AKI leads to increased secretion of metabolic byproducts such as lactate, which plays a critical role in tissue repair. However, the relationship between metabolic reprogramming and inflammatory responses, as well as the underlying mechanisms, remain poorly understood. This study aims to clarify the regulatory effects of the glycolytic byproduct lactate on macrophage activation and phenotypic differentiation following AKI. We observed increased expression of M1/M2 macrophages and elevated secretion of inflammatory cytokines after folic acid-induced AKI. Immunofluorescence staining showed co-localization of macrophages with α-SMA. Manipulating lactate levels post-injury led to a decrease in macrophage expression and a reduction in fibroblast activation and proliferation, ultimately impairing renal tissue repair. These findings suggest that targeting lactate as a key regulator of macrophage phenotype differentiation may provide a theoretical and clinical foundation for therapeutic strategies in AKI repair.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular immunology
Cellular immunology 生物-免疫学
CiteScore
8.20
自引率
2.30%
发文量
102
审稿时长
30 days
期刊介绍: Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered. Research Areas include: • Antigen receptor sites • Autoimmunity • Delayed-type hypersensitivity or cellular immunity • Immunologic deficiency states and their reconstitution • Immunologic surveillance and tumor immunity • Immunomodulation • Immunotherapy • Lymphokines and cytokines • Nonantibody immunity • Parasite immunology • Resistance to intracellular microbial and viral infection • Thymus and lymphocyte immunobiology • Transplantation immunology • Tumor immunity.
期刊最新文献
Editorial Board Nebulized mesenchymal stem cell-derived exosomes attenuate airway inflammation in a rat model of chronic obstructive pulmonary disease Divergent impact of endotoxin priming and endotoxin tolerance on macrophage responses to cancer cells Seeking tolerance in immunology: Looking back, looking forward Breast cancer stem cells convert anti-tumor CD4+ T cells to pro-tumor T regulatory cells: Potential role of exosomal FOXP3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1