Enhancing visibility in hazy conditions: A multimodal multispectral image dehazing approach

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2025-02-07 DOI:10.1016/j.jvcir.2025.104407
Mohammad Mahdizadeh , Peng Ye , Shaoqing Zhao
{"title":"Enhancing visibility in hazy conditions: A multimodal multispectral image dehazing approach","authors":"Mohammad Mahdizadeh ,&nbsp;Peng Ye ,&nbsp;Shaoqing Zhao","doi":"10.1016/j.jvcir.2025.104407","DOIUrl":null,"url":null,"abstract":"<div><div>Improving visibility in hazy conditions is crucial for many image processing applications. Traditional single-image dehazing methods rely heavily on recoverable details from RGB images, limiting their effectiveness in dense haze. To overcome this, we propose a novel multimodal multispectral approach combining hazy RGB and Near-Infrared (NIR) images. First, an initial haze reduction enhances the saturation of the RGB image. Then, feature mapping networks process both the NIR and dehazed RGB images. The resulting feature maps are fused using a cross-modal fusion strategy and processed through convolutional layers to reconstruct a haze-free image. Finally, fusing the integrated dehazed image with the NIR image mitigates over/under exposedness and improves overall quality. Our method outperforms state-of-the-art techniques on the EPFL dataset, achieving notable improvements across four key metrics. Specifically, it demonstrates a significant enhancement of 0.1932 in the FADE metric, highlighting its superior performance in terms of haze reduction and image quality. The code and implementation details are available at <span><span>https://github.com/PaulMahdizadeh123/MultimodalDehazing</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104407"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000215","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Improving visibility in hazy conditions is crucial for many image processing applications. Traditional single-image dehazing methods rely heavily on recoverable details from RGB images, limiting their effectiveness in dense haze. To overcome this, we propose a novel multimodal multispectral approach combining hazy RGB and Near-Infrared (NIR) images. First, an initial haze reduction enhances the saturation of the RGB image. Then, feature mapping networks process both the NIR and dehazed RGB images. The resulting feature maps are fused using a cross-modal fusion strategy and processed through convolutional layers to reconstruct a haze-free image. Finally, fusing the integrated dehazed image with the NIR image mitigates over/under exposedness and improves overall quality. Our method outperforms state-of-the-art techniques on the EPFL dataset, achieving notable improvements across four key metrics. Specifically, it demonstrates a significant enhancement of 0.1932 in the FADE metric, highlighting its superior performance in terms of haze reduction and image quality. The code and implementation details are available at https://github.com/PaulMahdizadeh123/MultimodalDehazing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Stochastic textures modeling and its application in texture structure decomposition RQVR: A multi-exposure image fusion network that optimizes rendering quality and visual realism Enhancing visibility in hazy conditions: A multimodal multispectral image dehazing approach A two-step enhanced tensor denoising framework based on noise position prior and adaptive ring rank Noise variances and regularization learning gradient descent network for image deconvolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1